Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффекты толщины

Эффект толщины может быть также результатом зависимости между ориентацией образца и текстурой в а фазе. Как  [c.318]

Фиг, 209, Определение порядкового номера полосы на контуре а — влияние эффекта толщины при плохой установке модели б — правильная установка модели для получения чёткого контура в левой средней и нижней  [c.716]

Размеры модели выбираются из условий имеющегося материала, возможности выполнить модель с соблюдением требуемого соотношения размеров и обеспечения точности измерений. Толщина плоской модели не влияет на получаемую оптическую картину при нормальном просвечивании, но лучше применять минимальную по условию устойчивости толщину это дает меньшую глубину зоны краевого эффекта времени и уменьшает эффект толщины модели (плохая четкость изображения контура, увеличивающаяся с толщиной) в толстых плоских моделях под действием возникающих поперечных нормальных напряжений уменьшается поперечная деформация в зонах неравномерности напряжений в плоскости модели.  [c.524]


Размеры модели выбирают из условий имеющегося материала, возможности выполнить модель с соблюдением требуемого соотношения размеров и обеспечения точности измерений. Толщина плоской модели не влияет на получаемую оптическую картину при нормальном просвечивании, но лучше применять минимальную по условию устойчивости толщину модели это дает меньшую глубину зоны краевого эффекта времени и уменьшает эффект толщины модели (плохая четкость изображения контура, увеличивающаяся с толщиной) в толстых плоских моделях уменьшается поперечная деформация в зонах неравномерности напряжений в плоскости модели под действием возникающих поперечных нормальных напряжений. Преимущества крупных объемных моделей а) возможность иметь большей толщины срезы (в замороженных моделях) или пучки просвечивающих лучей (при применении рассеянного света), чем достигается повышение точности измерений и уменьшение  [c.585]

Причинами стабилизации зерен при собирательной рекристаллизации могут быть 1) дисперсные частицы или сегрегации примесей на границах 2) текстурное торможение 3) эффект толщины .  [c.125]

Когда матрица стабилизирована эффектом толщины , то решающее влияние на скорость роста оказывает энергия свободной поверхности зерен у,. Поэтому рост зерен, у которых грани с минимальной энергией совпадают с поверхностью листа, будет энергетически выгоден по сравнению с ростом других кристаллитов.  [c.126]

Рассматриваются толстые металлические образцы, для которых эффект толщины (зависимость свойств от размера образца) несуществен.  [c.188]

При отжиге тонких листов, когда размер зерен становится равным толщине листа, их рост замедляется, но зерна еще продолжают расти в плоскости листа. После того как размер зерен в плоскости листа становится в 2—3 раза больше его толщины, рост совсем прекращается. Одной из причин тормозящего действия свободных поверхностей, называемого эффектом толщины , является образование канавок термического травления в местах выхода границ зерен на эту поверхность. Канавки образуются при отжиге из-за ускоренного испарения атомов с межзеренных границ и закрепляют границы, как бы привязывая их к соответствующим участкам поверхности.  [c.70]

Когда матрица стабилизирована из-за эффекта толщины , т. е. из-за закрепления границ зерен в тонких листах канавками термического травления в местах выхода границ на поверхность листа, то решающее влияние на скорость роста оказывает энергия свободной поверхности зерен. У кристаллов трансформаторной стали (Ре+37о Si) грани 1 10 [ обладают минимальной поверхностной энергией (как грани с максимальной плотностью упаковки атомов в о. ц. к. решетке). Поэтому рост кристаллов, у которых грани I МО j. совпадают с поверхностью листа, будет энергетически выгоден по сравнению с ростом всех других кристаллов.  [c.81]


Например, в задаче о кристаллооптической пластинке при использовании д. г. у. и отсутствии учета чисто поверхностных эффектов толщину пластинки нужно считать достаточно большой по сравнению с параметром решетки а.  [c.242]

Уравнения, приведенные выше, являются уравнениями пограничного слоя, полученными при обычных предположениях теории Прандтля. Эти уравнения можно рассматривать как приближение первого порядка внутреннего разложения уравнений Навье—Стокса при изучении их методом внешних и внутренних асимптотических разложений. Влияние членов более высокого порядка не учитывается, т. е. эффекты толщины вытеснения, взаимодействие внешнего течения с пограничным слоем, влияние завихренности при таком подходе не рассматриваются.  [c.111]

Геллер [7.58] усовершенствовал этот метод путем введения области отрыва потока. Пренебрегая эффектами толщины вытеснения, он провел итерационные расчеты пограничного слоя и потенциального течения с целью зафиксировать точку отрыва потока на спинке и корытце профиля. Затем было сделано предположение, что вдоль оторвавшихся линий тока статическое давление постоянно и определяется соответствующим распределением источников за местом отрыва потока. В целом получилось очень хорошее соответствие расчетных и измеренных распределений давления, углов поворота потока и коэффициентов сопротивления даже в том случае, когда отрыв потока происходил с передней части профиля.  [c.294]

Перспективная методика расчета могла бы использовать подход, описанный Геллером [7.58], в совокупности с современным описанием явления отрыва потока и поведения закромочного следа, а также соответствующим образом учитывать эффекты толщины вытеснения и толщины потери импульса, для которых предложенная в работе [7.70] модель двойной вихревой пелены дала хорошие результаты.  [c.298]

Хорошая электропроводность поверхности особенно необходима при изготовлении волноводов в высокочастотной технике. Здесь ток должен протекать параллельно поверхности (так называемый скин-эффект ). Толщина слоя, необходимая для получения этого эффекта, лежит в пределах толщины обычных гальванических покрытий.  [c.55]

Приведенные формулы не учитывают некоторое различие сопротивлений цилиндрического слоя для истечения и всасывания. В первом случае поток расширяется по мере увеличения диаметра цилиндрического слоя в направлении движения, т. е. имеет место диффузорный эффект, при котором градиент скорости вблизи твердых поверхностей зерен уменьшается. Поэтому потери давления получаются меньше, чем в слое такой же толщины, но без расширения. Во втором случае поток суживается, т. е. имеет место конфузорный эффект, при котором градиент скорости у твердых поверхностей зерен увеличивается и потери получаются больше, чем в таком же слое без сужения.  [c.308]

Зависимость (4.6) в принципе дает возможность описать влияние средних напряжений (или асимметрии нагружения), а также нестационарности нагружения на скорость роста усталостной трещины, так как эти факторы изменяют параметр и [289, 346, 354]. Но, к сожалению, следует отметить нарастание разногласий в отношении достоверности результатов измерений закрытия трещины разными методами [300, 324, 385, 418]. Одной из возможных причин большого разброса измерений закрытия трещины может быть различная протяженность фронта трещины (толщина образца) в разных экспериментальных исследованиях. Так, в работах [369, 408, 409] экспериментально показано, что доминирующее влияние на стор оказывает деформирование материала у вершины трещины в районе свободных боковых поверхностей образца. С увеличением толщины образца и соответственно протяженности фронта трещины влияние боковых поверхностей снижается и эффект закрытия трещины уменьшается, вплоть до его практически полного отсутствия в растягивающей части цикла. Для трещин с протяженным фронтом только при R — О (а не при / > 0) трещина перестает быть концентратором напряжений и в этом случае 1.  [c.191]


Было испытано несколько конструкций высокотемпературных термометров, часть которых показана на рис. 5.16 [23—25]. К настоящему времени ни одна из них не обнаружила особых преимуществ перед другими ни в отнощении стабильности, ни в отношении легкости изготовления. Поэтому вопрос об оптимальной конструкции высокотемпературного платинового термометра пока остается открытым. Какая бы конструкция ни была в конце концов признана лучшей, использование платиновых термометров сопротивления при температурах выше 600 °С будет осложняться, как показано ниже, эффектами, связанными с возникновением решеточных дефектов при охлаждении и вариаций толщины пленки окисла на поверхности платины.  [c.215]

Этот постулат исключает необходимость объяснения влияния многих перечисленных выще механических факторов. Однако он подразумевает, что величина /Сгкр и такие факторы, как эффект толщины образца, не связаны с напряжением. С позиций механики разрущения предполагается, что основное влияние скорости деформации заключается в локальном изменении пластического течения металла в верщине трещины (большинство титановых сплавов проявляют некоторую чувствительность к скорости деформации). Второй постулат [212] заключается в том, что существует критическая скорость деформации, способствующая образованию гидридов, которые ответственны за зарождение трещин коррозионного растрескивания. Этот постулат зависит от процесса проникновения водорода в материал. Дискуссия по этому вопросу излагается более подробно в дальнейшем.  [c.394]

Характерным для МПС, в отличие от ньютоновских сред, является аномальное их поведение при малых градиентах скорости сдвига, которое выражается в уменьшении вязкости с увеличением скорости сдвига. Кривые течения т (7) при Т = onst имеют явную нелинейность. Это можно объяснить проявлением пристенного эффекта, который обычно наблюдается для всякой дисперсной системы, имеющей предел прочности. Большинство авторов объясняет его уменьшением концентрации частиц дисперсной фазы в тонком пристенном слое толщ,иной в 2—10 мкм по сравнению с концентрацией их в ядре потока, т. е. в области более высоких скоростей течения. Интенсивность влияния пристенного эффекта на течение МПС зависит от концентрации частиц дисперсной фазы в объеме (ядре течения) и пристенном слое смазки, степени дисперсности структурных элементов, вязкости масляной основы и пластической вязкости смазки. Повышение дисперсности частиц смазки приводит к снижению пристенного эффекта. Толщина пристенного слоя не оказывает суш,ественного влияния на интенсивность проявления пристенного эффекта при течении смазок как в капиллярах, так и в кольцевых зазорах. Повышение концентрации металлических наполнителей в смазках увеличивает показатели консистенции и интенсивность проявления пристенного эффекта. Так, повышение концентрации порошков олова в смазке с 10 до 40 мас.% приводит к возрастанию вязкости в 1,5—2 раза. С ростом температуры интенсивность пристенного эффекта МПС снижается, а начало линейного участка кривой течения смещается в сторону меньших скоростей сдвига. Следовательно, при анализе работы МПС в подшипниках скольжения, когда зазоры между цапфой и вкладышем становятся соизмеримыми с характерными размерами дисперсных частиц наполнителя, надо учитывать аномалии течения, обусловленные пристенным эффектом.  [c.70]

Причинами стабилизации рекристаллизовавной матрицы могут быть а) дисперсные частицы или сегрегации примесей на границах б) текстурное торможение и в) эффект толщины . Все они уже были рассмотрены в 9 при обсуждении причин торможения роста зерна во время собирательной рекристаллизации. Роль торможения дисперсными частицами, текстурного торможения и эффекта толщины доказана экспериментально в разных конкретных случаях вторичной рекристаллизации.  [c.80]

Ц и к л о т р о н н ы й и диамагнитный резона н с ы. В металлах, помещенных в магнитное ноле Яц, направленное строго параллельно поверхности металла, также может наблюдаться резонансное поглощение радиоволн, обусловленное переходами в системе орбитальных уровней, образованных взаимодействием электронов нроводимости с нолем Я . Резонансные частоты определяются соотношением со = пеНд1т с, где т — эффективная масса электрона, е — его заряд, п — целое число. Переходы между этими уровнями осуществляются под действием электрич. компоненты Е высокочастотного ноля. При этом электроны подвержены действию поля только в течение части периода высокочастотного ноля, когда они находятся в с к и н - с л о е (см. Скин-эффект), толщина к-рого меньше радиуса орбиты. Циклотронный резонанс дает сведения об энергетич. спектре электропов проводимости металлов и форме Ферми поверхности, определяющей связь между энергией и импульсом электропов (см. также Циклотронный резонанс в металлах).  [c.305]

При ис1юльзовании легированных сталей целесообразно применять бандажи-рование ходовых колес, что дает значительный экономический эффект. Толщина сменяемого бандажа принимается в пределах 0.15 0,2 диаметра колеса, но не меиее 60 мм.  [c.45]

Для серебра и золота эквивалентный защитный эффект толщины покрытия, полученного методом плакирования, можно достичь методом электролитического осаждения. Как правило, оба металла успешно используют в гальванопластике. Однако в большинстве случаев покрытия, полученные методом злектроосаждеиия, особенно из металлов платиновой группы, и в меньшей степени блестящее покрытие золотом, подвержены в определенной степени образованию пористости, а также с увеличением толщины покрытия -— самопроизвольному растрескиванию из-за внутренних напряжений в процессе осаждения покрытия. Несмотря на это, основная масса покрытий драгоценными металлами для декоративных и технических целей, включая использование в области электроники, наносится электролитическим путем, так как требования к защитным свойствам покрытия являются в этом случае менее жесткими, чем требования к покрытиям, предназначенным для длительного использования в жидких или в коррозионных средах при высокой температуре может быть допущена некоторая степень пористости.  [c.453]


В гл. 7 упоминалось о коррекции профиля, осуществленной в работе [10.2]. Для расчета пограничного слоя до момента отрыва потока использовались метод потенциального течения Шлихтинга и теория пограничного слоя Труккенбродта. Путем многочисленных сравнений результатов расчетов по этим теориям удалось выразить эффект толщины вытеснения через дополнительное распределение источников и стоков. В результате был получен замещающий профиль с другим расположением выходной кромки. Далее рассчитывалось обтекание нового профиля потенциальным потоком, а результаты расчетов сравнивались с измерениями распределений давления, угла потока на выходе из решетки и коэффициента потерь. Согласие данных в широком диапазоне углов потока на входе в решетку оказалось очень хорошим.  [c.294]

С увеличением вылета электрода (см. рис. 28, г) возрастает интенсивность его подогрева, а значит, и скорость его плавления. В результате толщина прослойки расплавленного металла под дугой увеличивается и, как следствие этого, уменьшается глубина проплавления. Этот эффект иногда используют при сварке электродными проволоками диаметром 1—3 мм для увеличения количества расплавляемого электродного металла при сварке швов, образуемых в основнодг за счет добавочного металла (способ сварки с увеличенным вылетом электрода).  [c.37]

Однако для более полного эффекта выжигания углерода необходимо применять режимы сварки, характеризующиеся относи-те.пьно большой погонной энергней, что, однако, отрицательно сказывается на околонговной зоне в ней образуются значительные по размерам участки отбеливания и закалки, приводящие к образованию трещин. При сварт е чугуна с достаточно высоким содержанием элементов-графитизаторов при небольшой толщине стенки свариваемых деталей можно получить положительные результаты.  [c.335]

Симплекс Д/ т менялся от 7,1 до 79 в оребренных и от 6,5 до 140 в неоребренных каналах. Обнаружены (рис. 10-9) две области теплоотдачи, определяемые влиянием стесненности на движение плотного слоя (см. 9-5) область темплообмена при стесненном движении (Д/кт<30) и при нестесненном движении (автомодельная область — Д/ т>30). В первой области стесненного движения уменьшение влияния пристенного эффекта по мере роста симплекса Ajdj примерно до 30 приводит к улучшению теплообмена, так как относительная толщина и термическое сопротивление разрыхленного пристенного слоя уменьшаются. Обработка опытных данных в этой области обнаружила, что Ыи сл = /(А/с т) . Можно полагать, что в этой области основное термическое сопротивление создается пристенным слоем, так как здесь увеличение Д/ т приводит к росту теплоотдачи.С этих позиций для интенсифи-  [c.337]

На рис. 11.32 показано уплотнение, в котором манжета выполнена в виде наклонно расположенного круглого резинового кольца. Угол наклона манжеты выбирают по соотнощению 1 а 6.116,61 — толщина резинового кольца. Наклонное расположение манжеты создает условия для отбрасывания масла и смазывания поверхности вала, расположенной под манжетой,, обеспечивая хоропшй уплотняющий эффект и высокую долговечность.  [c.186]

Схематический график зависимости логарифма i от h по Хауффе и Ильшнеру приведен на рис. 31. Из этого графика следует, что скорость перемещения электронов вследствие туннельного эффекта определяет скорость образования самых тонких пленок (область /), а скорость переноса ионов — скорость роста более толстых пленок (область II). Так, окисление алюминия во влажном кислороде при 25 С описывается во времени логарифмическим законом, переходящим по мере увеличения толщины окисной пленки в обратный логарифмический закон (рис. 32) переход от логарифмического закона к обратно логарифмическому закону окисления наблюдали у тантала в интервале от 100 до 300° С.  [c.55]

Таким образом, перемешивание электролита в одном из пространств ячейки, облегчая диффузионные процессы (в результате уменьшения толщины диффузионного слоя), одновременно снижает концентрационную поляризацию и катодного, и анодного процесса, т. е. вызывает одновременно и эффект неравномерной аэрации, и мотоэлектрический эффект, которые действуют в противоположных направлениях. Направление тока при этом, т. е. полярность электродов гальванической макропары, обусловлено преобладанием одного из этих эффектов. Для менее термодинамически устойчивых металлов (Fe, Zn и др.) преобладает эффект неравномерной аэрации, а для более термодинамически устойчивых металлов (серебра, меди и их сплавов, иногда свинца) — мотоэлектрический эффект. Следует, забегая несколько вперед, отметить, что у электродов макропары неравномерной аэрации или мотоэлектрического эффекта за счет работы микропар в большей или меньшей степени сохраняются функции — у катода анодные, а у анода катодные (см. с. 289).  [c.247]

Резко неравиомернос течение в собирающем канале имеет место даже при малых значениях характеристики аппарата Л,, так как направление отделяющихся струек мало зависит от этой характеристики. Поэтому увеличение коэффициента сопротивления пористой перегородки (например, за счет ее толщины) пли уменьшение ее коэффициента живо1 о сечения не дает требуемого эффекта. В этом случае не очень эффективны внутренние вставки, профиль которых рассчитан из условия получения постоянного статического давления вдоль раздающего канала (см. рис. 10.32, б). Кроме того, сужение этого канала по направлению к заглушенному концу раздающего канала может усилить унос взвешенных частиц, так как при этом, вследствие больших продольных скоростей, взвешенные частицы будут с еще болыней вероятностью отбрасываться к концу канала, а следовательно, еще больше увеличивать их концентрацию в месте, соответствующем наибольшим скоростям струек после выхода из боковой поверхности в собирающий канал.  [c.303]

В прецизионных измерениях спектральной яркости необходимо обеспечивать определенное положение и размер наблюдаемой площадки на ленте. Это вызвано тем, что избежать градиентов температуры и упоминавшихся выше вариаций излучательной способности от зерна к зерну невозможно. И хотя подробности распределения температуры вдоль ленты зависят от ее размера, теплопроводности, электропроводности и полной излучательной способности, результирующее распределение вблизи центра не должно сильно отличаться от параболического. Такие отличия, как это наблюдалось, возникают из-за вариаций толщины ленты и существенны для ламп с широкой и соответственно тонкой лентой. В газонаполненной лампе с вертикально расположенной лентой максимум смещается вверх от центра вследствие конвекции. В вакуумной лампе к заметной асимметрии распределения относительно центра приводит эффект Томсона. Наиболее высокая температура в вакуумной лампе всегда близка к отметке на краю ленты. На рис. 7.23 показаны градиенты температуры, измеренные при двух температурах на ленте лампы, конструкция которой приведена на рис. 7.19. Температурные градиенты на лентах газонаполненных ламп несколько больше, чем градиенты, показанные на рис. 7.23, и имеют асимметричный вид из-за конвекционных потоков. Конвекционные потоки существенно зависят от формы стеклянной оболочки и ее ориентации по отношению к вертикали. При некоторых ориентациях яркостная температура начинает испытывать весьма значительные циклические вариации с периодом порядка 10 с и амплитудой в несколько градусов. Перед градуи-  [c.359]

Пере.мещение вала в подшипнике за вре.мя Дг зависит от импульса силы РДг. При заданной закономерности изменения нагрузки по времени можно подобрать теомстрические параметры подшипника и вязкость масла, обеспечивающие в конце каждого цикла нарастания нагрузки достаточную толщину масляного слоя в точке наибольшего сближения вала и подшипника и сохранение жидкостного трения, несмотря на слабый насосный эффект вала и полное его отсутствие (при неподвижном вале).  [c.361]


Еще большая ошибка в последнем методе допускается, когда при расчете среднелогарифмической разности температур вместо температуры теплоносителя на входе в пористый материал используется его начальная температура. Вследствие резкого повышения температуры потока в очень тонком слое охладителя у входа в пористую структуру эта ошибка в действительности может иметь место даже тогда, когда измеряют температуру теплоносителя вблизи входа в пористую стенку. В результате теплоноситель получает теплоту до входа в образец, что приводит к значительному завышению объемного внутрипорового коэффициента теплоотдачи йу- При этом величина предварительного подогрева зависит от условий эксперимента, например, от расхода теплоносителя,и очень ре> ко - от толщины образца. Для тонких пористых пластин толщиной около 1 мм с объемным тепловьщелением предварительный подогрев может составить до 0,9 всего нагрева охладителя, быстро уменьшаясь с увеличением его расхода. Если учесть, что основная часть приведенных в табл. 2.4 результатов получена для образцов толщиной менее 5 мм, то можно ожидать, что именно этот эффект и является основной причиной зависимости объемного коэффициента внутрипорового теплообмена от толщины образца в тех случаях, когда его толщина 5 включена в явном виде в критериальное уравнение теплообмена. В то же время при использовании расчетно-экспериментального метода обработки данных для широкого диапазона толщин образцов в специально поставленных экспериментах не обнаружена зависимость коэффициента объемного тегшообмена от толщины образца [ 11]  [c.42]


Смотреть страницы где упоминается термин Эффекты толщины : [c.270]    [c.150]    [c.106]    [c.115]    [c.122]    [c.209]    [c.276]    [c.296]    [c.216]    [c.241]    [c.56]    [c.302]    [c.106]    [c.404]    [c.321]    [c.146]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.318 ]



ПОИСК



622 несимметричные условия краевой эффект, 620, 623, 634 ---переменной толщины, 622 деформация -----с удлинениями

Зависимость скорости ползучести от толщины поверхностных плеВлияние температуры и напряжения на эффект теплоизоляции

Напряжение оптический эффект изменения напряжений по толщине пластинки

Оболочки вращения анизотропные Эффект краевой и перемещения 154, 155 — Напряжения 158 — Слои — Коэффициенты упругости 156, 157 Теория 152—158 — Толщина

Эффект Защитные покрытия - Определение толщины



© 2025 Mash-xxl.info Реклама на сайте