Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Современные представления о механизме КР

По современным представлениям, механизм межкристаллитной коррозии алюминиевых сплавов имеет электрохимическую природу необходимым ее условием является пассивное состояние 516  [c.516]

Согласно современным представлениям механизм флюсования в системе металл—окисная пленка—флюс носит электрохимический характер обусловленный ионным строением солевых флюсов, применяемых при пайке [99].  [c.174]

Согласно современным представлениям, механизм защитного действия неметаллических покрьггий связан как с изолирующим действием, так и с влиянием на электрохимические процессы.  [c.6]


Даны современные представления о термодинамике и кинетике окисления металлов, механизме образования и законах роста различных пленок, рассмотрены механизм и различные виды электрохимической коррозии, описаны важнейшие методы исследования коррозионных процессов.  [c.2]

Образование границ зерен — структурное превращение, присущее литому металлу (сварному шву, отливке) в период завершения его кристаллизации из жидкого расплава. Границы образуются непосредственно при срастании первичных кристаллитов. Поскольку кристаллические решетки кристаллитов ориентированы произвольно, то их сопряжение при срастании кристаллитов сопровождается существенными искажениями решеток. Эти искажения и приводят к образованию граничной поверхности. Существует также мнение, что границы образуются путем собирания дислокаций, неупорядоченно расположенных в металле после затвердевания в одну граничную поверхность в результате процесса полигонизации, однако более обоснован первый механизм образования границ. Современные представления о строении границ сводятся к тому, что на границах чередуются участки хорошего и плохого соответствия кристаллических решеток соседних зерен. Это так называемые островные модели границ зерен. Строение и протяженность участков плохого соответствия зависят от угла разориентировки решеток смежных кристаллитов. Различают малоугловые (угол до 15°) и большеугловые (угол свыше 15°) границы. Малоугловые границы описывают как ряд отдельных дислокаций (рис. 13.9,а). Расстояние между ними D определяется соотношением  [c.501]

Схема (7.75) соответствует современным представлениям о механизме комптон-эффекта. Этот механизм не следует путать с механизмом составного ядра, когда (7.72) не имеет места.  [c.317]

Оно написано на базе современных представлений о дислокационной структуре металлов. В нем рассматриваются структурные несовершенства кристаллов, механизмы пластической деформации, особенности пластической деформации моно- и поликристаллов, изменение структуры и свойств, вызываемые деформацией и последующим нагревом, динамическая рекристаллизация и др. Анализируются технологические свойства металлов и сплавов, такие как сопротивление деформации (напряжение течения) и пластичность — особо важная характеристика, поскольку обработка давлением допустима только до тех пор, пока пластичность материала исчерпана не до конца.  [c.4]

Поскольку закономерности процесса деформационного упрочнения, согласно современным представлениям [66, 233, 254], сводятся к закономерностям процесса размножения и взаимодействия дислокаций, то и преобладание винтовых дислокаций в структуре ОЦК-металлов требует учета особенностей размножения винтовых дислокаций. Для винтовых дислокаций вместо дискретных источников рассматривают обычно двойное поперечное скольжение. Авторы [254] отмечают, что при этом элементом, контролирующим процесс упрочнения, является не отдельная дислокация, а линия скольжения, а сам подход требует подробного теоретического и экспериментального исследования геометрии двойного поперечного скольжения и его роли в эволюции дислокационной структуры и механизмах упрочнения ОЦК-металлов.  [c.104]


Согласно современным представлениям о механизме взаимодействия разнородных материалов в твердой фазе, прочные химические связи образуются лишь на третьей стадии процесса за счет объемного взаимодействия [2]. При этом в пределах потенциально возможного объема активного центра образуются зародыши (ядра) из продуктов реакции. С целью облегчения протекания процесса образования прочных химических связей необходимо организовать в зоне контакта благоприятные условия для химической реакции подобрать компоненты по химическому сродству с учетом выбранной схемы взаимодействия, обеспечить необходимую контактную температуру и среду, в которой следует выполнять процесс осаждения.  [c.93]

Изложены современные представления о причинах и механизме образования холодных трещин в сварных соединениях сплавов на основе титана, базирующиеся на результатах исследований авторов, а также данных отечественных и зарубежных исследователей. Рассмотрены методики проведения исследований, дана сравнительная оценка склонности к растрескиванию различных титановых сплавов в сварных соединениях. Описаны способы предупреждения образования холодных трещин в сварных соединениях в зависимости от условий работы изделий из титановых сплавов.  [c.318]

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ биоповреждения МАТЕРИАЛОВ  [c.47]

В соответствии с современными представлениями переход в хрупкое состояние обусловлен изменением характера разрушения. Выше порога хрупкости разрушение происходит по ямочному (чашечному) вязкому механизму. При разрушении по такому механизму менее пластичное включение или де< кт сплошности является концентратором напряжений. Коэффициент концентрации/Г = 2(с/г) , где с — длина концентратора г - радиус закругления в его вершине. Если рассматривать концентратор как эллипс с осями а и Ь, то в первом приближении  [c.25]

Плотность дислокаций. Процесс упрочнения сопровождается значительным увеличением плотности дислокаций. По современным представлениям, основным механизмом увеличения плотности дислокаций является работа источников Франка — Рида [4, 5]. Обычно считают, что каждый источник способен генерировать ограниченное число дислокаций. Поэтому в процессе деформации должны создаваться новые источники дислокаций.  [c.152]

Теория локальных элементов, однако, не отражает полностью современные представления о механизме электролитических реакций. Количественные расчеты в рамках этой теории не обеспечивают необходимую точность из-за сложности определения суммарной поверхности всех катодных и анодных участков металла. Часто некоторые участки являются катодными в одной системе и анодными — в другой.  [c.17]

Полученные зависимости характеризуют также взаимосвязь релаксации макронапряжений и снижение деформационного упрочнения при нагревах, которое хорошо согласуется с современными представлениями о механизме процессов возврата, контролирующих процесс снятия макронапряжений.  [c.151]

Акад. Г. В. Курдюмов занимается изучением теоретических вопросов металловедения. Его работы можно разбить па три группы 1) изучение мартенситного превращения, 2) изучение отпуска закаленной стали и 3) изучение отпускной хрупкости стали. Деятельность его в области советского металловедения исключительно плодотворна. Все его работы сочетают в себе блестящие эксперименты с глубокими обобщениями и выводами. На основе своих работ Г. В. Курдюмов неоднократно ломал старые отжившие представления но основным вопросам металловедения и вместо них вводил новые, являющиеся последним словом передовой советской науки. Современные представления об атомном строении закаленной стали, о кинетике мартенситного превращения и о механизме отпуска закаленной стали были установлены классическими работами Г. В. Курдюмова.  [c.189]

В развитии современных представлений о механизме коррозионной усталости металлов и сплавов большую роль играют исследования Ю. Эванса, Н. Д. Томашова, Г. В. Карпенко, С. Г. Веденкина, А. В. Рябченкова и др. Особенное значение для раскрытия механизма коррозионно-усталостных процессов приобретают в настоящее время представления  [c.131]


К кризису теплообмена относят явления резкого снижения теплоотвода от теплоотдающей поверхности вследствие изменения механизма теплообмена. По современным представлениям при этом происходит уменьшение количества жидкости, находящейся в контакте со стенкой, и стенка начинает перегреваться.  [c.144]

Согласно современным представлениям о механизме процесса ядерного кипения существует ряд положений, противоречащих теории накипеобразования Холла.  [c.71]

В заключение надо отметить, что из всех описанных полуэмпирических теорий турбулентности невозможно получить представление о взаимосвязи осредненных и пульсационных характеристик переноса. Между тем эти вопросы имеют глубокое принципиальное значение, определяемое необходимостью углубления современных представлений о механизме турбулентного переноса, и представляют чисто прикладной интерес. Действительно, мы зачастую сталкиваемся с такими задачами турбулентного переноса, в которых определение компонента тензора рейнольдсовых напряжений и пульсационных потоков скалярной субстанции не только вызывается необходимостью замыкания осреднен-  [c.63]

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ ПРОЦЕССА ТЕПЛООБМЕНА В ЗОНЕ КЛЕЕВЫХ СОЕДИНЕНИИ  [c.8]

В результате многочисленных исследований сформировались современные представления и теории, объясняющие механизм действия антиокислителей. Полагают, что окисление, в частности окисление углеводородов, происходит по механизму образования свободных радикалов. Первичные радикалы могут быть инициированы термическим или механическим расщеплением молекул, Они легко соединяются с кислородом, образуя перекис-ные радикалы, которые затем реагируют по направлениям, зависящим от среды и типа соединения. Конечными продуктами являются кетоны, спирты и карбоновые кислоты, которые могут конденсироваться, образуя полимеры в виде лаков, смолистых отложений, осадков и др. последние могут служить источником коррозии или оставаться инертными по отношению к металлам.  [c.164]

Согласно современным представлениям [6, 7]. процесс растворения металлов в кислых средах протекает по электрохимическому механизму, в основе которого лежат как минимум две сопряженные реакции анодное растворение металла  [c.11]

Таким образом, четкое уяснение современных представлений о природе прочности материалов и тонком физическом механизме их разрушения окажется для специалистов важной теоретической основой не только при выборе подходящих конструкционных материалов для деталей различного целевого назначения и поисках рациональных способов формирования в них требуемых прочностных свойств, но и при разработке технологических процессов обработки материалов, а также при определении видов и рабочих характеристик используемого в производстве технологического оборудования.  [c.5]

Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмо-лекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы.  [c.128]

Анализ экспериментальных данных показал, что при образовании поверхности методом среза величина нормальных и ка сательных напряжений, действующих на металл, превышает предел текучести в 1,5—5 раз. При этом не только разрываются атомные связи в плоскости среза или в направлении сдвига слоя металла, но и происходит всесторонняя упруго-пластическая деформация. Поэтому вид, количество и размер поверхностных дефектов (величина выступов и впадин) после механической обработки зависят от соотношения пластической деформаций Ттах И напряжений хрупкости Отах. Специальными исследова- ниями было установлено, что если Ттах>сТтах, то более вероятна пластическая деформация, если 0тах >Ттах, происходит хрупкое разрушение материала. Поэтому в зависимости от вида и режима механической обработки (точения, фрезерования, шлифования) схема напряженного состояния материала может быть различной и, следовательно, будут изменяться текстура деформированных слоев металла, вид, размер и характер макро- п микрогеометрии поверхности (рис. 78, 79). В соответствии с современными представлениями, механизм образования поверхности кристаллических тел методом среза имеет свои особенности. Энергия кристаллов, находящихся на поверхности, превышает энергию кристаллов в объеме. Дело в том, что под воздействием тангенциальных напряжений поверхностный слой сжимается, а глубинные слои оказывают ему сопротивление. Поскольку поверхностный слой очень тонкий, во многих случаях он не выдерживает и разрывается. Кроме того, на вновь образованной поверхности имеются некомпенсированные химические связи, компенсация которых идет за счет адсорбции, образования плен и др. Вот почему поверхность, образованная механической обработкой, всегда имеет повышенное количество суб-микроскоппческих двумерных и точечных дефектов — вакансий, дислокаций, примесных атомов, микротрещин и др. (рис. 80, а).  [c.117]


Водород приводит к хрупкости, если он облегчает не только зарождение, 1ю и распространение трещнн. Прн росте образовавшейся трещины снижение поверхностной энергии за счет адсорбции водорода уже не играет доминирующей роли. Согласно современным представлениям, механизм разрушения металлов определяется эффективной поверхностной энергией, которая складывается из поверхностной энергии трещины у и работы пластической деформации металла р, связанной с распространением трещины. В пластичных металлах работа пластической деформации в тысячи раз превышает поверхностную энергию у, так что, если водород снизит поверхностную энергию трещины даже до нуля, это не внесет существенных изменений в характер расиространения трещин.  [c.354]

Современные представления о механизме старения, подтверждаемые особым методом рсптгепоструктурного анализа, таковы в процессе естественного старения происходят подготовительные процессы к выделению, само же выделение может произойти лишь при высоких температурах, обеспечивающих достаточную скорость атомным перемегцсниям (диффузии).  [c.573]

Ведущая роль радикалов Н и ОН характерна для цепного механизма горения всех углеводородов. Даже оксид угл ерода СО, в составе которого нет атомов водорода, по современным представлениям сгорает с участием радикалов, образующихся при диссоциации водяного пара. Поэтому скорость горения СО зависит не только от  [c.144]

В отличие от монокристаллов механическое двойникование в поликристаллах играет, согласно современным представлениям [22], роль только дополнительного механизма деформации, который не вносит заметного вклада в пластичность материала, однако существенно влияет на протекание скольжения при низких температурах, как бы моделируя скольжение за счет локальных концентраций напряжения. Важно отметить при этом двойственную роль механического двойникования, которое из-за пониженной релаксационной способности материала, связанной с высокими значениями сопротивления движению дислокаций при низких температурах, может вызывать раскрытие хрупких микротрещин и последующее разрушение без заметной пластической дефюрмации (особенно в жестких схемах нагружения с элементами растяжения).  [c.56]

Подробно изложены современные представления о структуре границ зерен в поликристаллах — геометрическая теория, структурные дефекты, атомная теория с учетом энергетических параметров, взаимодействие границ с примесными атомами и т. д. Рассмотрены механизмы, определяющие прочностные и другие физические свойства поликристаллов, а также механизмы миграции и перестройки границ, зернограничного проскальзывания и охрупчивания (тре-щинообразования), сегрегации и диффузии примесей, представляющие значительный научный и практический интерес. Книга содержит результаты оригинальных исследований авторов, а также новые данные советских и зарубежных исследований.  [c.319]

Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]

В С1 ге современных представлений развитие трещины коррозионного растрескивания в высокОпрочньхх закаленных сталях может протекать по двум механизмам. Вначале трещина равномерно углубляется вследствие локальной коррозии ее вершины, а затем, в результате смены механизма, развивается дискретно, т. е. трещина начинает с некоторого момента углубляться в тело металла скачками. При коррозионном углублении трещина разветвляется. При скачкообразном механизме ветвление не наблюдается, поскольку, по мнению бодащинства исследователей, определяющим в развитии трещины является водородное охрупчивание [37,40,41].  [c.70]

Третий механизм — это предположение Запифе [365] о том, чтО водород накапливается во внутренних полостях и трещинах и давление газа в них облегчает разрушение. Предположение было высказано для объяснения разрушений в процессе наводорожи-вания и, несомненно, справедливо в некоторых отдельных случаях [62]. Общностью, в своей первоначальной форме, оно не обладает [309, 318]. Позже механизм Заппфе был модифицирован, II теперь предполагается, что давление водорода во многих случаях создается только в процессе деформации и не оказывает существенного влияния до стадии образования шейки образца [72 74, 100, 124]. В сочетании с современным представлением о неравновесном переносе водорода дислокациями [314] и о влиянии водорода на зарождение вязкого разрушения [366], эта модифицированная теория давления водорода может найти применение. В частности, она уже использовалась для объяснения некоторых данных в этой главе.  [c.145]

Разнообразие условий внешней среды требует использования различных методов для определения коррозионной стойкости металлов. Поэтому невозмох<но рекомендовать универсальные методы ускоренных коррозионных испытаний. Методы испытаний должны учитывать характер коррозионного процесса и основываться на современных представлениях о механизме коррозии.  [c.49]

Проблема термоцпклической прочности является комплексной проблемой, включающей в себя три основных вопроса. Первый вопрос заключается в разработке уравнений состояния, способных с удовлетворяющей инженерную практику точностью описать кинетику напряженно-деформированного состояния, процессы пластичности и ползучести при переменных нагрузках и температурах. Уравнения состояния должны включать параметры, характеризующие процесс накопления повреждений и разрушения материала. Второй вопрос заключается в выборе физически обоснованной меры повреждаемости материала, характеризующей кинетику разрушения материала на различных стадиях процесса деформирования, и разработке соответствующих кинетических уравнений, устанавливающих связь между указанной мерой и параметрами процесса. Третьим вопросом является формулировка соответствующих гипотез, связывающих кинетику процесса деформирования и накопления повреждений с типом разрушения, и критериев разрушения, связывающих параметры напряженно-деформированного состояния и меры повреждаемости для критических состояний материала. При решении указанных трех проблем должна учитываться существенная нестационарность нагрун<ения н нагрева Б условиях малоциклового термоусталостного разрушения, а формулировка соответствующих уравнений и критериев должна опираться на современные представления физики твердого тела о микро- и субмикроскопическом механизмах пластических деформаций и накопления повреждений в материале [42—64 .  [c.141]


Результаты анализа свойств блочных полимеров показывают, что механизм теплопереноса в таких системах. значительно сложнее по сравнению с низкомолекулярными веществами. Это вызвано в первую очередь более сложной структурой полимерных материалов. Кроме того, несмотря на значительный объем экспериментального материала по теплофизическим свойствам полимеров до сих пор остается практически открытым вопрос о стройной теории теплопереноса в полимерах, исходящей из современных представлений о струк-турообразовании систем на молекулярном и надмолекулярном уров-  [c.37]

На основании современных представлений о механизме формирования порраничного слоя можно предполагать, что на начальном участке трубы вид входного устройства влияет на закономерности теплообмена, предопределяя изменения уровней и профилей средней (во времени) и пульсационной скоростей потока в начальном сечении трубы. Поэтому можно предполагать, что введением в соответствующие критериальные уравнения параметров, описывающих поля средних и пульсационных скоростей, удастся получить зависимость, справедливую для всех типов входных устройств.  [c.78]

Механизм кавитационной эрозии является сложным, и до настоящего времени строгая теория этого явления не разработана, Существует более 40 гипотез, класси-фнкагщя и систематизация которых даны в работе [Л. 132]. В обобщенном виде, основываясь на современных представлениях о явлении кавитации [Л. 128, 134], можно дать следуюи1ее толкование механизма эрозии в зоне кавитации.  [c.142]

Современные представления о механизме сублимации развиты на основе модели несовершенной поверхности кристалла, предложенной в работах Косселя, Странского, Френкеля и др. Следуя этой модели, на поверхности реального кристалла можно указать такие положения атома, в которых число его соседей и поэтому связь с поверхностью будут неодинаковы. Рассмотрим детально атомную структуру поверхности, ограниченной, например, плоскостью (111) г. ц. к. решетки и показанной на рис. 193. На рисунке изображено два слоя атомов, причем верхний слой является неполным.  [c.422]


Смотреть страницы где упоминается термин Современные представления о механизме КР : [c.625]    [c.62]    [c.142]    [c.91]    [c.2]    [c.41]    [c.440]   
Смотреть главы в:

Прогнозирование и диагностика коррозионного растрескивания магистральных трубопроводов  -> Современные представления о механизме КР



ПОИСК



Лютцау. Современные представления о структурном механизме деформационного старения и его роли в развитии разрушения при малоцикловой усталости

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ ВОЗНИКНОВЕНИЯ КР

Современные представления о механизме биоповреждений материалов

Современные представления о механизме задержанного разрушения закаливающихся сталей и образования холодных трещин при их сварке

Современные представления о механизме процесса теплообмена в зоне клеевых соединений



© 2025 Mash-xxl.info Реклама на сайте