Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая кинетика анодных и катодных процессов

ЭЛЕКТРОХИМИЧЕСКАЯ КИНЕТИКА АНОДНЫХ И КАТОДНЫХ ПРОЦЕССОВ  [c.198]

Рис. 3. Определение электрохимической скорости сплава S на основе кинетики анодных и катодных процессов (поляризационной диаграммы коррозии) АА и КК — теоретическая анодная и катодная поляризационные кривые есА и Рис. 3. Определение электрохимической скорости сплава S на основе кинетики анодных и <a href="/info/183814">катодных процессов</a> (<a href="/info/6516">поляризационной диаграммы</a> коррозии) АА и КК — теоретическая анодная и катодная поляризационные кривые есА и

Рис. 1. Определение электрохимической коррозии сплава (S) из кинетики анодных и катодных процессов (поляризационной диаграммы коррозии) Рис. 1. Определение <a href="/info/39838">электрохимической коррозии</a> сплава (S) из кинетики анодных и <a href="/info/183814">катодных процессов</a> (<a href="/info/6516">поляризационной диаграммы</a> коррозии)
Коррозия рения в исследуемых растворах имеет электрохимическую природу, и особенности коррозионного поведения рения целиком определяются кинетикой анодных и катодных процессов в рассматриваемых условиях.  [c.177]

Так, например, удельное сопротивление почв может быть ниже 500 ом СМ (для влажных засоленных почв) и выще 10 ООП пн см (для сухих почв). Чаще же опо лежит именно в этих пределах. Скорость процесса электрохимической коррозии, как известно, целиком определяется кинетикой анодных и катодных процессов, а для протяженных коррозионных пар, помимо этого, зависит также от омического сопротивления коррозионной среды. Рассмотрим условия протекания анодных и катодных процессов в почвенных условиях.  [c.357]

Скорости анодного и катодного процессов, протекающих с участием свободных электронов, как и всех электрохимических процессов, в соответствии с законами электрохимической кинетики (см. с. 198), зависят от величины электродного потенциала металла.  [c.177]

Таким образом, чтобы обоснованно судить о скорости электрохимического коррозионного процесса из теоретических предпосылок, необходимо в первую очередь, знать величины равновесных потенциалов анодных и катодных процессов в условиях коррозии, что определит термодинамические возможности коррозии (уменьшение свободной энергии системы при протекании коррозии) и электрохимическую кинетику протекания анодных и катодных процессов, зависящую от степени их заторможенности или поляризуемости. В отдельных случаях приходится учитывать также и омический фактор.  [c.30]

Сближение потенциалов анода и катода при замыкании элемента на конечное сопротивление зависит от поляризуемости электродов, т. е. от перенапряжения анодного и катодного процессов. Следовательно, оно подчиняется закономерностям кинетики электродных реакций. Закон Ома, описывающий скорость движения электрических зарядов в некоторой среде, имеющей определенное электрическое сопротивление, непригоден для описания скоростей химических или электрохимических реакций. Скорость последних экспоненциально зависит от потенциала, так как изменение его изменяет энергию активации. Использование закона Ома в рассматриваемом случае не оправдано.  [c.190]


Уменьшение коррозии при введении ингибиторов может произойти вследствие торможения анодного процесса ионизации металла (анодные ингибиторы), катодного процесса деполяризации (катодные ингибиторы), обоих процессов одновременно (смешанные анодно-катодные ингибиторы) и увеличения омического сопротивления системы при образовании на металлической поверхности сорбционной пленки, обладающей пониженной электропроводностью. Таким образом, тормозящее действие ингибиторов коррозии обусловлено воздействием их на кинетику электрохимических реакций, лежащих в основе процессов электрохимической коррозии.  [c.65]

Влияние ингибиторов на кинетику электрохимических реакций, т. е. на скорость коррозионного процесса, определяется также в потенциостатическом режиме. Для этого снимаются анодные и катодные поляризационные кривые. В общем случае анализ формы поляризационных кривых и изучение характера их зависимости от состава раствора, температуры, ингибирующих добавок позволяют получить довольно полные сведения о природе изучаемого электрохимического процесса, В зависимости от того, как влияют на кинетику электрохимической реакции конкретные ингибиторы и в какой степени замедляют ее, их делят на анодные, катодные или смешанные. В результате дополнительных графических построений, определяют точки саморастворения и затем скорость коррозионного процесса (г/(м ч), по формуле  [c.179]

Рассматривая электрохимические процессы, следует отметить, что первичным актом их протекания является адсорбция компонентов среды на поверхности металла. Адсорбционные процессы существенно влияют на кинетику сопряженных анодной и катодной коррозионных реакций. Представляется интересным кратко рассмотреть основные положения теории адсорбции на металлах из растворов электролитов.  [c.24]

Электрохимическая коррозия — это процесс, подчиняющийся законам электрохимической кинетики. При этом виде коррозии одновременно протекают две реакции — анодная и катодная, локализованные на определенных участках поверхности корродирующего металла.  [c.11]

Излагается теория двойного слоя на границе металл—раствор и механизм возникновения скачка потенциала на этой границе. Обсуждается поведение металлических электродов в условиях протекания внешнего тока па основе общей теории кинетики электродных процессов. Детально рассматриваются кинетические закономерности процессов катодного выделения водорода, электрохимического восстановления кислорода и ионизации металлов. Выведены выражения, определяющие коррозионное поведение металлов в условиях их саморастворения для случая идеально однородной поверхности и при ее дифференциации на анодную и катодную зоны.  [c.2]

В зоне соприкосновения двух разнородных материалов возникает контактная разность электрических потенциалов. Один металл из этой пары, обладающий менее отрицательным потенциалом по сравнению с другим, является более благородным . Поверхность конструкционного материала может быть неоднородной по химическому составу, по физическим свойствам (местные нагартовки и пр.). Может быть неоднородной и среда-электролит (различная концентрация примесей). Это приводит к образованию макро- и микрогальванических элементов с появлением электрических токов, которые и являются причиной электрохимической коррозии. В системе возникают анодные и катодные участки. Анодные участки обладают более отрицательным электродным потенциалом. Здесь металл переходит в виде гидратированного иона в раствор, оставляя на поверхности электроны (процесс окисления). В области катода притекающие с анодного участка электроны передаются частицам вещества-деполяризатора, например кислорода. В зависимости от того, кинетика какой реакции определяет коррозию, говорят об анодном или катодном контроле скорости коррозии.  [c.22]

Образование пленки меди на бронзовой поверхности происходит в результате электрохимического процесса — процесса растворения металла. Согласно закону электрохимической кинетики скорость анодного растворения должна возрастать при увеличении потенциала, однако в нашем случае этого не происходит. Вследствие образования сервовитной пленки между анодными и катодными участками поверхности бронзы процесс растворения может полностью прекратиться, наступит установившийся режим трения. Если по каким-либо причинам медная пленка разрушится, то вновь произойдет растворение бронзы, и поверхность будет обогащаться медью, пока снова не наступит пассивное состояние.  [c.274]


Очень широкое распространение получили электрохимические методы исследования пассивности снятие потенциостатических кривых, анодных и катодных кривых заряжения, изучение кривых спада потенциала, исследование емкости двойного слоя, кинетики электродных процессов при поляризации импульсным и переменным током. Для определения структуры, толщины и состава образующихся при пассивации защитных пленок применяют электронографический, оптический, микрохимический, радиографический и некоторые другие методы.  [c.18]

Исследование кинетики анодной или катодной электрохимической реакции обычно начинается с установления связи между удельной скоростью процесса, выражаемой через плотность тока, и сдвигом потенциала от равновесного значения. Зависимость между потенциалом и плотностью тока может иметь вид, схематически представленный на рис. 111,1 и П1,2.  [c.97]

К настоящему времени доказано [4—6], что растворение металлов (электрохимический процесс) — результат протекания сопряженных и независимых катодной и анодной реакций, скорость которых, согласно законам электрохимической кинетики, определяется общим значением потенциала на границе металл — раствор, составом раствора и условиями диффузии компонентов или продуктов реакции в растворе. Скорость окислительной и восстановительной реакций выражается через плотность анодного и катодного токов. Электрохимические принципы защиты металлов от коррозии [7, 8] вытекают из анализа коррозионных диаграмм (рис. 1), на которых представлены в зависимости от потенциала истинные скорости возможных в системе металл — раствор анодных и катодных реакций. Защита металла от коррозии достигается либо электрохимической защитой — искусственным поддержанием потенциала вблизи равновесного потенциала анодной реакции ф  [c.9]

Электрохимическая коррозия — наиболее распространенный вид разрушения металлов. Ее протекание подчиняется законам электрохимической кинетики и определяется скоростями электродных процессов — анодного и катодного.  [c.149]

Процессы электрохимической коррозии описываются законами электрохимической кинетики. При этом процессе протекают две группы реакции катодная и анодная. За счет возникающего электрического тока может иметь место удаление продуктов коррозии от очагов разрушения. На скорость процесса коррозии существенное влияние оказывает технология изготовления конструктивного элемента аппарата.  [c.146]

К коррозионному процессу, протекающему по электрохимическому механизму можно применить законы электрохимической кинетики, достаточно полно разработанные к настоящему времени [6]. В соответствии с этими законами скорость коррозионного процесса будет определяться скоростями катодного ( к) и анодного ( а) процессов  [c.11]

Смещение стационарного потенциала в щели в отрицательную сторону в первом случае — приведет к активированию металла и усиленному его разрушению в щели 12 <12), а во втором случае Кз — ) пассивное состояние не будет нарушено (I s i ). Отсюда следует, что особо чувствительными к щелевой коррозии должны быть металлы, находящиеся в пассивном состоянии. Однако не всегда уменьшение эффективности катодного процесса и ускорение анодного в щелях должно вызывать активирование сплава. Если эти изменения в кинетике электрохимических реакций не выводят стационарный потенциал за значение потенциала полной пассивации, активирования не произойдет. Хотя нержавеющие и обычные стали (последние  [c.217]

Кинетика электрохимических процессов 28 анодных процессов 30, 55 катодных процессов 33 Кинетический контроль 40 Кислородная деполяризация 37 Кислотостойкие литые стали 216 Кобальт коррозионная стойкость 231 сплавы с вольфрамом и хромом 232  [c.356]

При ВЫСОКИХ температурах практически полностью исчезает перенапряжение, связанное с затруднениями в электрохимических актах электронных переходов (при ионизации металлов, перезаряде и разряде ионов). Вследствие этого анодный (ионизация металлов) и катодный (восстановление деполяризатора) процессы могут протекать как на одних и тех же, так и на различных участках поверхности корродирующего. металла. Какой из предполагаемых процессов будет лежать в основе коррозии и с какой скоростью будет протекать процесс в данных условиях, можно судить из более детального рассмотрения термодинамики и кинетики соответствующих реакций.  [c.187]

Чтобы изучить теорию процессов электрохимической коррозии, нужно знать главным образом общие законы и механизм работы коррозионных гальванических элементов, в частности, электродные потенциалы и кинетику (или поляризуемость) катодных и анодных реакций.  [c.50]

Поляризация катодного выделения водорода, имеющая обычно электрохимическую природу, в существенной мере определяется материалом катода и практически не зависит от концентрации электролита [207]. Величина pH оказывает влияние на поляризацию процесса лишь при низких плотностях тока. Из побочных реакций, которые могут протекать на катоде, следует отметить процесс катодного восстановления сравнительно электроположительных катионов (например, меди, никеля), перешедших в раствор с анода [115]. Данный процесс облегчается в кислых средах. В достаточно концентрированных подкисленных нитратных электролитах может происходить катодное восстановление анионов N0 до анионов N0 , а при значительном отрицательном смещении потенциала до образования аммиака [184]. Восстановление катионов нейтрального электролита (обычно К" , Ма+) невозможно вследствие очень низких электроотрицательных значений их равновесных потенциалов, которые обычно не достигаются в условиях анодного растворения металлов. При исследовании кинетики анодного растворения металлов широко применяются методы снятия поляризационных кривых и температурно-кинетический метод. Рассмотрим несколько примеров использования этих методов применительно к анодному растворению металлов и сплавов различной природы.  [c.35]


Рис. 1. Коррозионные диаграммы, поясняющие электрохимические принципы защиты металла от коррозии для случаев, когда изменяется кинетика анодного процесса (кривые А и А ) и катодных реакций с равновесными потенциалами (кривые I, II, III) и (кривые Рис. 1. <a href="/info/130801">Коррозионные диаграммы</a>, поясняющие электрохимические принципы <a href="/info/308692">защиты металла</a> от коррозии для случаев, когда изменяется <a href="/info/556746">кинетика анодного процесса</a> (кривые А и А ) и <a href="/info/183847">катодных реакций</a> с равновесными потенциалами (кривые I, II, III) и (кривые
Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно.  [c.10]

Почвенной коррозии подвергаются различные металлоемкие конструкции и сооружения (трубопроводы для различных целей, кабели связи, сооружения метро, гидросооружения и т. п.). В нашей стране в почву заложено около 30 млн. т металла. Процесс коррозии металлов в почве — электрохимический, аналогичный процессам, протекающим в жидкостях с кйслородной деполяризацией, однако с рядом характерных особенностей. Этн особенности обусловливаются составом микропористой структуры почвы, ее влажностью, воздухопроницаемостью. Скорость почвенной коррозии определяется кинетикой анодных и катодных процессов, а для протяженных сооружений, помимо этого, омическим сопротивлением среды.  [c.50]

Установление доминирующей роли электрохимического механизма для подавляющего числа практических случаев коррозии металлов и сплавов позволяет в полной мере применить основные законы электрохимической кинетики к анализу, расчетам и прогнозам коррозии. Исходя из электрохимической трактовки, реально устанавливающаяся скорость термодинамически возможного процесса будет определяться кинетикой (скоростями) анодного и катодного процессов, зависящих, как известно, от устанавливающихся электрохимических потенциалов. В конечном итоге зависимость скорости коррозии (S), пропорциональная плотности коррозионного тока ix), может быть представленЗ графически, на так называемой поляризационной диаграмме, представляющий зависимость скоростей анодного и катодного процессов от потенциала (рис. 3). На этой диаграмме плотность коррозионного тока ix определяют по точке пересечения анодной АА и катодной КК поляриза-  [c.28]

Н.меегся много опубликованных статей, относящихся к электрохимическим исследованиям влияния ингибиторов и поверхностно активных веществ на процесс корразии при использовании потенциостата [95, 96], Адсорбция органических и неорганических ионов на поверхности металла имеет очень важное значение, так как, изменяя заряд поверхности, этот процесс соответственно изменяет и потенциал поверхности. Некоторые подробности использования поляризационной техники для изучения специфического влияния адсорбционных процессов на кинетику анодных и катодных реакций описываются в работах [95, 96].  [c.611]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

Современная теория электрохимической коррозии металлов основывается на том, что не только чистый металл, но и металл с заведомо гетерогенной поверхностью корродирует в электро-ште как единый электрод согласно закономерностям электрохимической кинетики. На его поверхности одновременно и независимо друг от друга протекают анодная и катодная реакции, в совокупности составляющие процесс коррозии. В то же время роль электрохимической гетерогенности процесса электрохимической коррозии велика, хотя в ряде сл> чаев повышение гетерогенности приводит не к увеличению скорости коррозии, а, наоборот, к ее снижению. Качественно и количественно роль гетерогенности проявляется в кинётгмеских Характеристиках анодной и катодаой реакций. При коррозии технических сплавов, для которых характерен высокий уровень электрохимической гетерогенности поверхности, возможно неравномерное распределение скорости анодного процесса на поверхности сплава, обусловливающее преимущественное растворение отдельных фаз, что приводит к локализации коррозии [25, 27].  [c.29]

Принципы коррозионностойкого легирования, разработанные для водных сред, можно применить для паровых фаз. С точки зрения электрохимической коррозии следует также рассматривать и влияние внешних и внутренних факторов при коррозии в паровых средах. Можно полагать, что только при очень низких давлениях пара коррозионные процессы будут протекать по механизму газовой коррозии. При постоянной температуре давление воды не влияет на кинетику электродных процессов. На рис. 1-10, 1-11 представлены анодные и катодные кривые, снятые в автоклаве для электрохимических исследований при комнатной температуре с образцов из стали 1Х18Н9Т.  [c.33]

В более общем случае все ступени в меру их кинетического сопротивления, определяемого падением потенциала на данной ступени, принимают участие в установлении общей скорости коррозионного процесса. Количественное соотношение между основными контролирующими факторами электрохимической коррозии может быть определено на основании изучения кинетики электродных (анодных и катодных) реакций в условиях протекания коррозии и построения соответствующих коррозионных диаграмм (рис.9). Здесьи Е Х— соответственно анодная и катодная поляризационные кривые, т. е. зависимости потенциала анода или катода от величины коррозионного тока. Соотношение (f — P /Kop=tg9 представляет собой общую поляризуемость или общее торможение протеканию данного коррозионного процесса (вомическом выражении). Аналогично этому А А /кор=1ёа и A -/ op=tgр представляют собой среднюю анодную и соответственно катодную поляризуемость (торможение). Омическое сопротивление протекания коррозионного процесса определяется величиной tgY.  [c.41]


Широко распространено представление о том, что в силаве типа твердого раствора катодные и анодные процессы равномерно распространяются по всей поверхности сплава. Во многих случаях, когда исследователя не интересует вопрос о расположении и со-отношении катодных и анодных участков на корродирующей поверхности, такое представление является вполне допустимым, даже и для явно микрогетерогенных систем, так как сильно упрощает расчеты и методы изучения кинетики коррозионных процессов. Однако предположение о равномерном распространении катодного и анодного процессов на всю поверхность сплава является условным упрощением (статистическим усреднением) и, в действительности, поверхность сплава типа твердого раствора на атомарном уровне является электрохимически гетерогенной и коррозионный процесс (анодный и катодный) относится к ди скретным отдельным атомам сплава.  [c.27]

В более общем случае все ступени в зависимости от X кинетического сопротивления, определяемого падением потенциала на данной ступени, принимают участие в установлении общей скорости коррозионного процесса. Количественное соотношение между основными контролирующими факгорЗхМИ электрохимической коррозии может быть определено на основании изучения кинетики электродных (анодных и катодных) реакций в условиях коррозии и посгроения соответствующих коррозионных диаграмм, как это иллюстрируется рис. 4. Здесь ЕаХ—анодная, —катодная поляризационные кривые, т. е. зависимость потенциала анода, или соответственно катода от коррозионного тока. Соотношение  [c.23]

Количественное соотношение между основными контролирующими факторами электрохимической коррозии может быть определено на основании изучения кинетики электродных реакций (анодных и катодных) в условиях протекания коррозконного процесса и построения коррозионных диаграмм, как это показано на рис. 81. Здесь  [c.181]

Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес.  [c.204]

Из многочисленных способов защиты, пожалуй, наиболее важны методы, повышающие торможение анодного процесса или, другими словами, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. К этим методам защиты относятся создание большинства коррозионноустойчивых сплавов, как, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и нассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки, или смазки). В последнее время методы защиты путем анодного торможения коррозионного процесса дополнились принципиально новыми предложениями катодным легированием сплавов и применением анодной поляризации внешним током или использованием катодных протекторов. Открытие этих методов было логическим следствием большого числа глубоко продуманных систематических исследований в области кинетики электрохимических процессов коррозии.  [c.10]

В некоторых случаях возможно повышение коррозионной стойкости посредством увеличения общей термодинамической стабильности сплава. Однако эти случаи, связанные с легированием сплава значительным количеством более стабильных или даже благородных металлов, имеют меньшее значение для создания промышленных ковструкдионных сплавов повышенной коррозионной стойкости. Гораздо большее практическое значение имеют пути повышения стойкости сплавов, базирующиеся на изменении электрохимической кинетики катодных и анодных процессов.  [c.59]


Смотреть страницы где упоминается термин Электрохимическая кинетика анодных и катодных процессов : [c.62]    [c.890]    [c.20]    [c.22]    [c.63]    [c.11]    [c.67]    [c.170]    [c.171]   
Смотреть главы в:

Курс теории коррозии и защиты металлов  -> Электрохимическая кинетика анодных и катодных процессов



ПОИСК



V катодная

Анодный

Анодный процесс

Кинетика

Кинетика анодных процессов

Кинетика процесса

Кинетика электрохимическая

Кинетика электрохимических процессов

Кинетика электрохимических процессов анодных процессов

Кинетика электрохимических процессов катодных процессов

Процесс электрохимический

Процессы катодные

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте