Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протектор катодный

В последующих главах подробно рассматриваются свойства и применение протекторов, катодных преобразователей, специального оборудования для защиты от блуждающих токов и анодов (анодных заземли-телей) с наложением внешнего тока. В числе областей применения рассматриваются подземные трубопроводы, резервуары-хранилища, цистерны, кабели систем связи, сильноточные кабели и кабели с оболочкой, заполненной сжатым газом, суда, портовое оборудование и внутренняя защита установок для питьевой воды и различных промышленных аппаратов. Отдельная глава посвящена проблемам защиты трубопровода и кабелей, подвергаемых действию высокого напряжения. В заключение рассматриваются затраты на защиту от коррозии и вопросы экономичности. В приложении даны справочные таблицы и дан вывод математических формул, представлявшихся необходимыми для практического применения способов защиты и для более полного понимания излагаемого материала.  [c.18]


Протекторы катодные. Эффективность анодной защиты определяется прежде всего правильным выбором материала катодов. Форма и размеры являются важными, но вторичными факторами, так как их выбирают для каждой конкретной защищаемой конструкции.  [c.89]

В табл. 60 приведены показатели эффективности различных типов установок электрохимической катодной защиты газопровода, а в табл. 61 — характеристика работы протекторов промышленного типа при защите газопровода в грунте.  [c.394]

Наиболее эффективным средством защиты металлических конструкций от коррозии блуждающими переменными токами является метод поляризованных (присоединенных к защищаемому сооружению через полупроводниковые диоды) протекторов и дренажей он дает возможность снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них катодный полупериод, который обеспечивает их катодную защиту.  [c.397]

Для осуществления протекторной защиты к конструкции присоединяют протектор, обычно в виде пластины или цилиндра, который в данной среде обладает более электроотрицательным потенциалом, чем любой участок защищаемой конструкции. Схематически такая защита (рис. 201) сводится к превращению электродом П анодных участков А данной конструкции, состоящей в простейшем случае из короткозамкнутой системы двух электродов А—К, в катодные. В этом случае анод посылает электроны во внешнюю цепь меньше или даже сам начинает их принимать от присоединенного протектора.  [c.301]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]

В большинстве случаев при катодной защите с использованием наложенного тока или протекторов целесообразно одновременно применять и различные изоляционные покрытия. Такое совмещение сейчас общепринято. Распределение тока на трубопроводах с покрытиями много лучше, чем на непокрытых общий ток и необходимое число анодов меньше, а участок трубопровода, защищаемый одним анодом, намного больше. Так как земля в целом представляет собой хороший проводник электрического тока, а сопротивление грунта локализовано только в области, примыкающей к трубопроводу или электродам, то с помощью одного магниевого анода можно защищать до 8 км трубопровода с покрытием. Для непокрытого трубопровода соответствующее расстояние составляет 30 м. При применении наложенного тока с повышенным напряжением один анод может защищать до 80 км трубопровода с покрытием. Предельная длина участка трубы, защищаемого одним анодом, определяется не сопротивлением грунта, а собственным сопротивлением металлического трубопровода.  [c.221]


Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу.  [c.315]

Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3.  [c.11]

Из таблицы видно, что наличие контура заземления требует увеличения количества протекторов в три раза, а при катодной защите увеличивается металлоемкость анодов в два раза. Поэтому для оптимальной защиты заземленных емкостей и резервуаров необходимо выполнить следующие условия  [c.31]

По уравнению (23) рассчитываются блуждающие токи в зоне рельсового транспорта на расстоянии до 500 м. При хорошей изоляции трубопроводов следует применить либо вентильные перемычки с рельсами, либо другие известные средства, уменьшающие входное (переходное) сопротивление магистрального трубопровода. Более удаленные от рельсов подземные сооружения (/> 500 м), из-за малых значений блуждающих токов, практически не будут подвержены коррозии. Защиту их от почвенной коррозии целесообразно выполнять с помощью протекторов или катодных станций.  [c.48]

Осуществлять защиту отдаленных от рельсов сооружений электродренажными установками экономически нецелесообразно из-за дороговизны прокладки электрокабелей большой длины и сечения. Поэтому защиту таких сооружений осуществляют, как правило, протекторами и катодными установками.  [c.60]

Проверку и приемку защитных устройств должны осуществлять, как правило, в процессе строительства защищаемого сооружения в строгом соответствии с проектом. Однако ка практике часто наблюдаются случаи, когда строительство средств активной защиты проводят после сдачи коммуникаций в эксплуатацию, а это в свою очередь приводит к излишним работам и соответственно удорожанию сметной, стоимости строительства средств защиты. Так, например, стоимость контрольно-измерительного пункта строящегося трубопровода составляет 42—50 рублей, уложенного в три раза дороже. Проверку протекторов, электродов анодного заземления и соединительных кабелей проводят обычно внешним осмотром, а исправность катодных станций, электродренажных установок, вентильных блоков и изолирующих фланцев — путем электрических измерений на специальном стенде.  [c.65]

В по МСЭ), сила тока в цепи труба—протектор и потенциал на трубопроводе. При наладке катодной и электродренажной защиты проверяются потребляемый ток, напряжение и потенциал труба — земля в точке подключения. Защитная зона установки определяется расстоянием от точки ее присоединения к трубопроводу до участка, где потенциал достигает защитной величины. Величины граничных значений защитных потенциалов приведены в табл. 13.  [c.66]

Приведены подробные сведения о применяемых в ФРГ протекторах, преобразователях станций катодной защиты и анодных заземлителях, используемых в установках катодной защиты с внешним источником тока. Описаны особенности катодной защиты от коррозии резервуаров-хранилищ, цистерн, промышленных объектов, кабелей телефонной и телеграфной связи, а также силовых кабелей.  [c.14]

Для расчета продолжительности работы протектора исследовано количество электричества, отдаваемое графито-двуокисно-марганцовым протектором, в зависимости от плотности тока разряда. Опыты проводили в 65%-ной серной кислоте при 20° С. Протектор катодно поляризовали при различных плотностях тока, которые поддерживали постоянными в течение всего опыта. Потенциал протектора контролировали вольтметром. Опыт прекра-  [c.161]


Сопротивлепие У. к. значительно повышается также при создании в поверхностных зонах тела сжимающих остаточных ([апряжений с одгювреметгаым поверхностным упрочнением. Особенно надежны комбинированные методы, сочетающие различные виды поверхностного упрочнения (механич.., термич. и хнмико-термпч.) с разными мерами защиты от коррозии (неметаллич. и анодные лшталлич. покрытия, протекторы, катодная поляризация внешним током и др.).  [c.388]

Методы защиты металлов от коррозии. Для защиты металлических изделий и конструкций от коррозии пользуются различными методами, учитывая причины и условия коррозии. Все способы борьбы с коррозией можно свести к следующим группам защиты легированию (сплавлению), окисньш пленкам, обработке коррозионной среды, металлическим покрытиям, неметаллическим покрытиям, электрозащите и протекторам (катодная защита).  [c.188]

Эффект растет с ростом Як и уменьшается с ростом металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод)  [c.296]

В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы).  [c.394]

На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек-  [c.219]

В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [221, который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия.  [c.224]

Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

Конструктивно поляризованная система представляет собой обычную систему протекторов, подключаемых к защищаемому трубо-1 ров оду с помощью полупроводниковых диодов (рис. 2.3), пропуска-пщих ток только в наоравленки от трубопровода к протектору. Наличие таких протекторов в катодной зоне трубопровода не влияет на величину блуждающих токов, входящих в трубопровод, так как она определяется только переходным сопротивлением трубопроводв.  [c.46]

Остальные участки трубопроводов, подлежащие катодной поляризации, защищаются с помощью катодных станций или протекторов. При этом необходимо иметь в виду, что протекторная защита может быть применена для катодной поляризации отдельных участков трубопроводов небольшой протяжённости и не имеюшлх электрических контактов с другими сооружениями.  [c.10]

Защиту катодными протекторами осуществляют путём создания электрического контакта защищаемой конструкции с вспомогательным электродом из более благородного металла-платины, палладия, нержавеющей стали, графита, оксидов FejO , РвзОз, МЮ2).  [c.68]

Катодно - протекторная защита Материалом протекторов обычно является цинк, магниевые сплавы, алюминиевоцинковые сплавы. Металл протектора выбирают с учетом техникоэкономических показателей. Так, расход металла протектора на 1А в год составляет 5,9 кг - для алюминия 6,7 кг - для цинка.  [c.70]

Для достижения лучшего эффекта катодно-протехторной зашиты необходимо учитывать ряд факторов конфигурацию защищаемой конструкции, радиус действия протектора (который в значительной мере зависит от электропроводности среды) и др.  [c.70]

Для устранения или уменьшения щелевой коррозии можно использовать катодную защиту, г.е. поляризовать конструкшю от внешнего тока или контактированием с анодами - протекторами. Так, в щели нержавеющей хромоникелевой стали марок 18-10 после выдержки в морской  [c.206]


Протекторная эащита. Принцип защиты катодной поляризацией с помощью протекторов состоит в образовании гальванической пары, катодом в которой служит защищаемое сооружение, а анодом — протектор (рис. 32). Металл протектора должен иметь электродный потенциал, более отрицательный, чем электродный потенциал загцищаемого металла. Так, по отношению к железу или его сплавам, имеющим электродный потенциал около минус 0,44 В по водородному электроду, в качестве протекторов можно использовать магний, обладающий электродным потенциалом минус 2,37 В, алюминий — минус 1,66 В, цинк — ми- ус 0,76 В. При протекторной защите разрушается протектор.  [c.77]

А, Б, В — протекторная защита Г. Д. Е — катодная защита 1 — протектор 2 — трубопровод (резервуар) 3 — электрический проводник 4 — контрольног измерительный пункт (КИП) S — полупроводниковый вентиль 6 —защитное заземление 7 — анодный заземлитель 8 —катодная станция.  [c.12]

Описаны основы коррозии и электрохимической защиты, теоретические основы и практика электрохимических измерений. Большое внимание уделено измерению потенциала в условиях подземной катодной защиты. Рассмотрены вопросы пассивной защиты, защиты протекторами и активной защиты как подземных сооружений, так н металлическпх сооружений в морской воде, а также защиты корпусов судов и отдельных элементов конструкций судов. Проанализировано влияние блуждающих токов на коррозию и методы дренажной защиты. Приведены сведения о защите скважин и внутренней защите промышленного оборудования.  [c.4]

Некоторые специалисты выразили скептическое отношение к результатам этих исследований. Еще в 1935 г. в одной из работ Американского института нефти в Лос-Анжелесе утверждалось, что токи от цинковых анодов (протекторов) на сравнительно большом расстоянии уже не могут защитить трубопровод и что защита от химического воздействия (например кислот) вообще невозможна. Поскольку в США вплоть до начала текущего столетия трубопроводы нередко прокладывали без изоляционных покрытий, катодная защита для них была сравнительно дорогостоящей и для ее осуществления требовались значительные токи. Поэтому естественно, что хотя в США в начале 1930-х гг. и защищали трубопроводы длиной около 300 км цинковыми протекторами защита катодными установками (катодная защита током от постороннего источника) обеспечивалась только на трубопроводах протяженностью до 120 км. Сюда относятся трубопроводы в Хьюстоне (штат Техас) и в Мемфисе (штат Теннесси), для которых Кун применил катодную защиту в 1931—1934 гг. Весной 1954 г. И. Денисон получил от Ассоциации инженеров коррозионистов премию Уитни. При этом открытие Куна стало известным вторично, потому что Денисон заявил На первой конференции по борьбе с коррозией в 1929 г. Кун описал, каким образом он с применением выпрямителя снизил потенциал трубопровода до — 0,85 В по отношению к насыщенному медносульфатному электроду. Мне нет нужды упоминать, что эта величина является решающим критерием выбора потенциала для катодной защиты и используется теперь во всем мире .  [c.37]

Измерение сопротивления растеканию тока, например от протекторов или от анодных заземлйтелей станций катодной защиты, проводится по трехэлектродной схеме. При этом измерительный ток подводится (рис. 3.23) через измеряемый и вспомогательный заземлители, а напряжение измеряется между заземлйтелей и зондом. Вспомогательный за-землитель должен быть удален примерно на четырехкратную длину контролируемого заземлителя (на 40 м), а зонд — примерно на двукратную длину заземлителя (на 20 м). Отсюда следует, что измерить сопротивление растеканию тока с трубопроводов и рельсов практически невозможно. При измерении сопротивления растеканию с изолированных участков в грунт всегда охватывается только ограниченная длина трубопровода, зависящая от примененной частоты.  [c.118]

Для внутренней защиты резервуаров и для защиты портовых сооружений и судов применяют полярные покрытия толщиной около 0,5 мм. При катодной защите для уменьшения катодного образования пузырьков нельзя применять омыляющиеся связующие [30, 31]. Образование пузырьков, как и катодный подрыв, усиливаются по мере снижения потенциала. Вероятно, что имеется некоторый критический предельный потенциал образования пузырьков для оценки системы покрытия, однако этот вопрос еще недостаточно исследован. Ввиду такой зависимости от потенциала приходится, например, поблизости от анодных заземлителей систем катодной защиты предусматривать особую защиту (см. раздел 18.3.2.2). Иногда отмечаемое ухудшение защитного действия при слишком близком располонгении протекторов, напротив, обусловливается не величиной потенциала, а химическим действием образующего гидрата Mg OH)j [21].  [c.172]


Смотреть страницы где упоминается термин Протектор катодный : [c.168]    [c.66]    [c.585]    [c.74]    [c.248]    [c.323]    [c.338]    [c.392]    [c.196]    [c.45]    [c.68]    [c.67]    [c.29]    [c.38]    [c.58]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.98 , c.99 ]



ПОИСК



V катодная

Анодная защита катодными протекторами

Защита катодная наложенным током конструкции присоединения протекторов

Катодные протекторы из благородных металлов

Конструктивное оформление защиты мерника 50-ноЙ серной кислоты с катодным протектором

Применение катодных протекторов

Протекторы

Протекторы и катодная защита



© 2025 Mash-xxl.info Реклама на сайте