Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Среда линейно упругая (тело Гука)

Уравнения осредненного движения. Движение в атмосфере подчиняется фундаментальным уравнениям механики сплошных сред, которые включают уравнение неразрывности (в соответствии с принципом сохранения массы) и уравнения изменения количества движения, т. е. второй закон Ньютона. Эти уравнения могут быть дополнены феноменологическими соотношениями, т.е. эмпирическими зависимостями, которые описывают удельную реакцию рассматриваемой непрерывной упругой среды на внешние воздействия (например, для случая линейно-упругого тела эти дополнительные соотношения представляют так называемый закон Гука).  [c.33]


Упругая сплошная среда. Линейно-упругая изотропная сплошная среда характеризуется уравнением состояния в виде закона Гука и представляет собой одну из наиболее простых классических моделей сплошных сред. Свойство упругости означает полную обратимость процесса деформирования при освобождении от нагрузки приобретенная упругим телом деформация исчезает. Математически это выражается формулировкой уравнения состояния в виде конечных однозначных функций (2.11), связывающих компоненты тензоров напряжений и деформаций. Если в формулах  [c.25]

Потенциальная энергия. Наи лее простую форму принцип возможных перемещений в механике деформируемого твердого тела принимает для линейно-упругих сред. Пусть имеет место обобщенный закон Гука (8.1), что дает основание заменить в выражении b Vv напряжения деформациями, которые предполагаем выраженными через перемещения. Тогда согласно формуле (9.4)  [c.194]

В настоящей главе после подробного обсуждения линейно упругой среды (тело Гука) приводятся краткие сведения из реологии о других средах (телах) и даются соответствующие им реологические уравнения.  [c.495]

В предыдущих параграфах мы пользовались сингулярным решением для изотропного упругого тела, хотя в большинстве практических случаев рассматриваемые материалы обладают сильно анизотропными упругими свойствами (например, слоистые и армированные материалы, а также большинство материалов естественного происхождения). Возрастание анизотропии сказывается на уменьшении симметрии в упругих свойствах и увеличении числа упругих постоянных, связывающих напряжения и деформации в точке такого тела. В теории упругости анизотропной среды показано, что произвольный анизотропный материал, не обладающий плоскостями симметрии упругих свойств, можно охарактеризовать 21 независимой упругой постоянной [19,20]. Использованную в этом случае форму закона Гука лучше всего продемонстрировать, записав шесть независимых компонент деформаций и напряжений для трехмерного случая в виде векторов j и е и заметив, что наибо-лее общее линейное соотношение между ними представляется в виде матрицы упругих податливостей [С] размером 6x6, откуда  [c.125]

Приведенные в первой главе формулы и уравнения справедливы для любой сплошной среды, независимо от того, является она упругой, пластической или находится в любом другом физическом состоянии. Для различных физических состояний сплошной среды физические уравнения различны. Рассмотрим среды или тела, для которых зависимости между деформациями и напряжениями носят линейный характер, т. е. подчиняются обобщенному закону Гука. По упругим свойствам тела разделяются, с одной стороны, на однородные и неоднородные, а с другой — на изотропные и анизотропные. Тела, в которых упругие свойства во всех точках одинаковы, называются однородными, а тела с различными упругими свойствами в различных точках тела — неоднородными. Неоднородность непрерывная, когда упругие свойства тела от точки к точке изменяются непрерывно, и дискретная, когда упругие свойства тела от точки к точке испытывают разрывы или скачки. Тела, упругие свойства которых во всех направлениях, проведенных через данную точку, одинаковы, называют изотропными, а тела, упругие свойства которых во всех направлениях, проведенных через данную точку, различны,— анизотропными. В зависимости от структуры тело может быть изотропным или анизотропным и одновременно однородным или неоднородным [91]. В случае однородного упругого тела, обладающего анизотропией общего вида, зависимость между компонентами тензора напряжений и тензора деформаций в точке линейная  [c.68]


Модели первых двух типов позволяют описывать реакцию грунтового массива иа внешнее (главным образом, механическое) воздействие. К ним относятся модели упругого тела по Гуку, вязкой жидкости, плоской упругой деформации основания сооружения, среда с линейным законом сопротивления фильтрации и т. п. Выбранные модели характеризуются соответствующими параметрами. В перечисленных моделях — это модуль упругости и коэффициент фильтрации. Решение задач с использованием таких моделей обычно составляет предмет геомеханики.  [c.7]

Опыт показывает, что при малых деформациях напряжение пропорционально де( юрмации. Этот факт, установленный Гуком для простейших деформаций, составляет формулировку известного закона Гука, справедливого только для достаточно малых деформаций и напряжений. Применительно к акустике бесконечно малых амплитуд мы можем ограничиться рассмотрением идеально упругих сред, для которых связь между напряжением и деформацией линейна. Поскольку в общем случае напряжение и деформация определяются тензорами второго ранга, имеющими по шесть независимых компонент, то естественным обобщением закона Гука будет линейная зависимость между ними. Тогда обобщенный закон Гука можно сформулировать так компоненты напряжения в данной точке тела являются линейными и однородными функциями всех компонент деформации, т. е.  [c.20]

Деформационные свойства вязкоупругих тел описываются феноменологическими теориями, наиболее разработанной среди которых является теория линейной вязкоупругости, описывающая вязкоупругое тело как комбинацию идеально упругой и идеально вязкой компонент. Поведение идеально упругой составляющей описывается в терминах классической теории упругости обобщенным законом Гука и характеризуется по крайней мере двумя упругими константами — модулем Юнга Е и коэффициентом Пуассона х. Другие константы — модуль упругости при сдвиге О и модуль объемного сжатия К — связаны с Е и ц следующими выражениями  [c.24]

Уравнения движения. Понятия напряжения и деформации и терминология, установленная для изотропных твердых тел, применимы без изменений к анизотропным твердым телам так же, как и уравнения движения, выраженные через напряжения, согласно уравнению (2.3). Но изменяется связь между напряжениями и деформациями- Согласно закону Гука в его наиболее общей форме каждая компонента напряжения зависит линейно от каждой компоненты деформации, а константы пропорциональности интерпретируются как упругие константы. Для изотропной среды имеются только две независимые константы. В случае поперечно-изотропной среды закон Гука содержит пять независимых констант. Если для них использовать обозначения Лява, то связь напряжения и деформации запишется так  [c.46]

Можно ли утверждать, что выполнение закона Гука предопределяет также линейную зависимость между перемещениями точек упругого тела и приложенными к нему силами и, как следствие, между обобщенными силами упругих реакций и обобщенными координатами Многочисленные простые примеры убеждают, что это не так. Реакция упругой среды на вдавливаемый в нее твердый шарик пропорциональна не первой, а полуторной степени перемещения центра шарика. Конец вертикального стержня под действием сжимающей осевой силы, если она достаточно велика (превосходит эйлерово критическое значение), перемещается вниз и в сторону эти перемещения сложным образом зависят от силы и отнюдь не будут малы, хотя закон Гука и малость деформаций имеют место.  [c.212]

Сложность процессов, протекающих в материале при деформировании, требует выдвижения ряда гипотез при построении теории, описывающей закономерности изменения деформированною состояния тела при механическом нагружении. Простейшей гипотезой механики сплошных сред является допущение о линейной связи между напряжениями и деформациями. Эта гипотеза, впервые сформулированная Гуком во второй половине XVII в., принята в качестве физического закона теории упругости. Закон Гука удовлетворительно описывает деформирование широкого класса конструкционных материалов при сравнительно неболыаих нагрузках. Для некоторых материалов (камень, бетон) отклонения от прямой пропорциональности существенны, однако для практических расчетов прочности большинства хрупких материалов применение этого закона вполне оправдано.  [c.275]


Приведенные ранее формулы и уравнения верны для любой сплошной среды, независимо от ее физических свойств. Переходя к упругому телу, мы должны выбрать модель, отражающую упругие свойства, и получить, в дополнение к уравнениям 1 и 2, зависимости между составляющими деформации и составляющими напряжений. Так как мы рассматриваем только малые деформации, то примем за упомянутую модель — сплошное тело, следующее обобщенному закону Гука. Иначе говоря, мы будем рассматривать только такие среды и тела, в которых составляющие деформации являются линейными функциями составляющих напряжений. Эти функции должны быть однородными, так как предполагается, что при отсутствии напряжений составляющие деформации также равны нулю, и наоборот если 8=7 = 0, тоиа = т = 0.  [c.22]

В данной главе получим классические уравнения деформирования среды в предположении, что среда эта — сплошная, однородная и изотропная, т. е. упругие свойства среды во всех направлениях одинаковы. Будем считать, что она линейно деформируема (для материала среды справедлив закон Гука), а перемещения и деформации тела достаточно малы. Там, где это необходимо, сделаем некоторые отступления от указанных допущений. В частности, далее в соответствующих главах будут подробно рассмотрены вопросы расчета упругонластических и вязкоупругих тел.  [c.25]

Чтобы сохранить в модели некоторые свойства, присущие твердому телу (сопротивляемость деформациям сдвига, упругость, пластичность, существование упругих предвестников ударных волн и волн разгрузкн, связанных с наличием более высокой скорости распространения возмущений, чем это следует из чисто гидродинамической модели), вводится девиатор напряжений т". В случае однофазной среды его принимают изменяющимся линейно с ростом деформаций по закону Гука до некоторого предела, после чего он должен удовлетворять условию пластпч-ностп. В главных осях тензора напряжений закон Гука, определяемый модулем сдвиговой упругости G, можно записать в виде  [c.147]

К описанию механического поведения непрерывной среды применимы все соотношения, рассмотренные в разделах 1.2.1—1.2.4. Вместе с тем реальные среды по-разному реагируют на одно и то же внешнее механическое воздействие. Эта реакция, или механическое поведение среды, определяется ее молекулярной структурой и состоянием при заданных внешних условиях. Обобщенные характеристики конкретных сред носят название уравнений состояния [16] ( onstitutive equations) [7] или определяющих уравнений входящие в них константы являются характеристиками механических свойств среды. Примерами простейших уравнений состояния идеализированных сред служат изотермические линейные законы деформирования упругих твердых тел (закон Гука) и вязких жидкостей (закон Ньютона).  [c.23]


Смотреть страницы где упоминается термин Среда линейно упругая (тело Гука) : [c.829]    [c.102]    [c.171]    [c.415]    [c.290]    [c.33]    [c.430]    [c.16]    [c.10]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.495 ]



ПОИСК



Гука)

Линейно-упругое тело

Среда упругая

Упругие тела

Упругости линейная

Упругость среды



© 2025 Mash-xxl.info Реклама на сайте