Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технические частиц

Многие из них образуют отдельные классы или группы, обладающие близкими физико-химическими свойствами. Задача анализа отработавших газов осложняется наличием в них паров воды, дисперсных частиц сажи, соединений свинца и фосфора, окислов железа и других элементов, входящих в состав конструкционных материалов, топлив и масел. Кроме того, автомобильному двигателю свойственны переменные режимы работы, большой диапазон отклонений токсических характеристик в зависимости от индивидуальных особенностей и технического состояния.  [c.20]


Распространение звуковых волн в взвесях представляет собой в основном явление переноса количества движения. К техническим применениям данной проблемы относятся поглощение звука в дисперсной системе, образованной газом и твердыми частицами или жидкими каплями, определение среднего размера частицы, а также задачи усиления и поглощения звука [361]. Вызывает также интерес с.лучай распространения звука в жидкости, содержащей большое число газовых пузырей, что существенно для военных подводных лодок.  [c.255]

Поверхность раздела между образующейся твердой и исчезающей жидкой фазами создает энергетический барьер при гомогенном возникновении зародышей, для преодоления которого необходима флуктуация энергии, равная Поэтому энергетически более выгодно возникновение зародышей твердой фазы в кристаллизующейся жидкости преимущественно на готовых межфазных поверхностях. Такими поверхностями при гетерогенной кристаллизации могут быть поверхности твердых частиц, всегда существующие в технических расплавах.  [c.438]

В общем случае задачей гидродинамики является определение скоростей и давлений для данного момента времени в любых точках пространства, через которое проходит поток жидкости (метод Эйлера), или для отдельных ( отмеченных ) частиц жидкости, заданных начальными параметрами (метод Лагранжа). Последующее решение задач технической гидродинамики осуществляется по методу Эйлера, причем в ряде случаев задача сводится к одноразмерной с введением необходимых поправок.  [c.70]

Во втором томе рассмотрены физико-технические аспекты защиты от ионизирующих излучений на ядерных реакторах, на заводах по переработке делящихся материалов, в урановых шахтах, иа ускорителях элементарных частиц, на космических кораблях.  [c.4]

Наиболее важное значение имеет случай силы тяжести. При небольших размерах тела во всех технических приложениях можно считать силы тяжести отдельных частиц тела системой практически параллельных сил ). Формулы (8) дают координаты центра параллельных сил тяжести частиц тела, или, кратко говоря, координаты центра тяжести тела. В этих формулах величина р есть вес единицы объема, т. е. удельный вес тела у. В случае однородного тела величина у постоянна (не зависит от координат) и может быть вынесена за знак суммы в числителе и знаменателе, а затем сокращена. Таким образом, получаем формулы для координат центра тяжести однородного тела  [c.92]


Постоянство отношения F/j соблюдается только до тех пор, пока скорость V заряженных частиц достаточно мала по сравнению со скоростью света с. Изучить связь между силой и ускорением при и, сравнимых с с, можно при помощ,и тех же опытов, которые были описаны выше, но для этого нужно располагать потоком достаточно быстрых частиц. Ускорение электронов до скоростей, сравнимых со скоростью света, не представляет больших технических трудностей. Уже при ускоряющем напряжении в 100 киловольт скорость электронов значительно превышает половину скорости света. Но для ускорения более тяжелых частиц, например ионов (т. е. атомов, лишенных одного или нескольких своих электронов), до скоростей, сравнимых со скоростью света, требуются специальные сложные устройства, описанные ниже ( 54 и 56). Частицы, обладающие скоростями, сравнимыми со скоростью света (например, испускаемые при радиоактивном распаде электроны и ядра гелия), также могут быть использованы в опытах для изучения связи между ускорением и силой.  [c.91]

Природные явления и техника дают огромное число примеров многофазных систем. Касаясь лишь технических устройств, укажем на генерацию и последующую конденсацию пара в установках тепловой и атомной энергетики, процессы дистилляции, ректификации, выпарки, используемые в химической технологии, холодильной и криогенной технике, пищевых производствах. Нетрудно убедиться, что различные типы многофазных (гетерофазных) систем (жидкость—газ, жидкие эмульсии, потоки жидкости или газа с твердыми частицами) встречаются чаще, чем однофазные. В настоящем издании предметом анализа будут в основном двухфазные системы.  [c.11]

При анализе движения системы многих реальных точек, каждая из которых движется в соответствии с законами Ньютона, динамическое описание системы неосуществимо с технической, непригодно с теоретической и бесполезно с практической точек зрения. В системах многих частиц возникают новые закономерности движения, обусловленные наличием большого числа частиц в системе, которые называются обычно статистическими. Статистическая физика, элементарными динамическими законами которой являются законы Ньютона, относится к классической физике и называется обычно классической статистической физикой. Следует, однако, отметить, что последовательное и полное обоснование ее возможно лишь с использованием квантовой теории.  [c.14]

Изучением законов равновесия и движения жидкостей занимается и другая наука — гидромеханика, в которой применяются лишь строго математические методы, позволяющие получать общие теоретические решения различных задач, связанных с равновесием и движением жидкостей. Долгое время гидромеханика рассматривала преимущественно невязкую (идеальную) жидкость, т. е. некоторую условную жидкость с абсолютной подвижностью частиц, считающуюся абсолютно несжимаемой, не обладающей вязкостью — не сопротивляющейся касательным напряжениям. В последнее время гидромеханика стала разрешать также проблемы движения вязких (реальных) жидкостей, а потому роль эксперимента в гидромеханике значительно возросла. Таким образом, изучением законов равновесия и движения жидкостей занимаются две науки гидравлика (техническая механика жидкостей) и гидромеханика.  [c.6]

Вторая часть посвящена прикладной ядерной физике. В эту часть вошли взаимодействие заряженных частиц и у-квантов высокой энергии с веществом, приборы ядерной физики, нейтронная физика, физика деления ядер, физические принципы технического использования явлений ядерной физики, а также космические лучи и связанные с ядерной физикой космологические вопросы.  [c.6]

Посмотрим теперь, нельзя ли непосредственно измерять сечения рассеяния нуклон — нуклон при определенных ориентациях спинов. Очевидно, что для этого надо либо в падающем пучке, либо в мишени (а еще лучше и там, и там) создать поляризацию, т. е. ориентировать большинство спинов частиц в определенном направлении. Создание таких, как их называют, поляризованных пучков и мишеней является трудной технической задачей.  [c.185]


Изучаемые в физике элементарных частиц процессы сейчас почти не имеют каких-либо технических применений. Более того, при существующем уровне знаний неясны даже возможные принципы использования этих процессов в ближайшем будущем. Однако человечество на своем опыте уже не раз убеждалось, что фундаментальные исследования необходимы как для гармоничности развития науки Б целом, так и для создания задела для развития принципиально новой техники.  [c.274]

Силы между частицами, вызываемые слабыми взаимодействиями, на всех доступных исследованию расстояниях безнадежно малы по сравнению с силами, обусловленными сильными и электромагнитными взаимодействиями. Правда, слабые взаимодействия так быстро нарастают с уменьшением расстояний, что в масштабах порядка 10" —10 см они могут стать сравнимыми с сильными. Но исследования на таких расстояниях пока лежат вне технических возможностей. Слабые взаимодействия порождают не только силы, но и процессы взаимопревращений частиц. И здесь эти взаимодействия, оказывается, способны делать многое, недоступное как сильным, так и электромагнитным взаимодействиям. Так, только под влиянием слабых взаимодействий частица сигма-плюс-гиперон распадается на протон и нейтральный пион  [c.280]

До сих пор мы говорили только о том, как слабые взаимодействия производят распады частиц. Но слабые взаимодействия должны вызывать также реакции рождения и превращения частиц. Обнаружение таких реакций технически крайне трудно, так как из-за малости константы связи соответствующие сечения очень малы. Поэтому наблюдать такие процессы если и можно, то только  [c.420]

Существует и другая, более важная практически причина, по которой в ядерной физике желательно знать существующую аппаратуру. В ядерной физике и особенно в физике элементарных частиц мы имеем дело с такими масштабами длин, времен и концентраций энергии, которые на много порядков отличаются от масштабов тех же величин в повседневных, привычных нам явлениях. Проникновение человека в эти новые для него области масштабов сопряжено с колоссальными техническими трудностями и требует необычайной изобретательности, большого труда и материальных затрат. Это проникновение по необходимости происходит крайне неравномерно. В одних случаях удается изучать явления в областях вплоть до см, в других, казалось бы, сходных ситуациях  [c.465]

Заряженные частицы можно разгонять по определенным траекториям комбинированным действием электрических и магнитных полей. Устройство, в котором под действием электрических и магнитных полей создается пучок заряженных частиц высокой энергии, называется ускорителем. В настоящее время ускорители различных типов являются практически единственными источниками заряженных частиц, используемых для осуществления ядерных реакций и реакций с элементарными частицами, В ускорителях получают пучки частиц с энергиями от нескольких МэВ до сотен ГэВ, причем верхний предел обусловлен не принципиальными трудностями, а существующим состоянием ускорительной техники. По грубой оценке технический прогресс приводит к повышению максимальной энергии ускорителя на порядок за десятилетие,  [c.466]

Технические жидкости обычно не подвергаются специальной очистке и в них имеются мельчайшие инородные частицы и микроскопические газовые пузыри. Эти объекты и являются центрами парообразования.  [c.261]

Под идеальной жидкостью подразумевают такую условную жидкость, которая обладает абсолютной несжимаемостью, абсолютной подвижностью частиц, а также от-сутствием сил оцепления между ними. Вязкость идеальной жидкости равна нулю. Таким образом, идеальная жидкость перемещается по трубам и каналам без сопротивлений (без потери энергии на трение). Когда реальная жидкость находится в покое, в ней не проявляются силы вязкости и она имеет свойства, близкие к овойствам идеальной жидкости. Следовательно, рассмотрение при решении гидравлических задач идеальной жидкости вместо реальной вполне допустимо. Такое рассмотрение позволяет применять точный математический анализ для решения технических задач в гидравлике.  [c.15]

Общая постановка задачи технической гидродинамики. К числу основных гидродинамических характеристик потока жидкости относятся а) поясненная выще скалярная величина р и б) векторная величина скорости и движения частиц жидкости. Для разных точек неподвижного пространства, занятого движущейся жидкостью, величины р и и в общем случае должны быть различны (в данный момент времени) кроме того, в любой данной неподвижной точке пространства эти величины могут изменяться во времени.  [c.70]

В общем случае величина дЬ выражает суммарный эффект следующих факторов работы изменения объема работы сил давления по перемещению частицы изменения кинетической энергии частицы работы сил тяжести (или равного ей изменения потенциальной энергии частицы в поле сил тяжести) так называемой технической работы работы против сил трения, обусловленных вязкостью среды. Раскроем содержание каждого из этих факторов.  [c.163]

Установлено [69], что относительная износостойкость Е технически чистых металлов и отожженных сталей при трении о закрепленные абразивные частицы прямо пропорциональна твердости НВ этих металлов и сталей  [c.124]

Класс сквозных дисперсных систем характерен тем, что скорости компонентов в принципе не имеют по верхнему пределу физических ограничений типа рассмотренных выше (технические ограничения, разумеется, существуют—по экономическим соображениям, истиранию частиц, эрозии поверхности и пр.). По нижнему пределу скорости ограничены неравенствами у>0, Ut>0. В этом — одно из основных отличий данного класса дисперсных систем от всех остальных. Согласно определению в этот класс входят все полностью проточные системы и поэтому, например, можно рассматривать как течение потока газовзвеси (продуктов сгорания металлизированного топлива) сквозь ракетное сопло, так п медленное гравитационное движение непродуваемо и слоя в вертикальной колонне. В первом случае скорость может достигать сверхзвуковых величин, а во втором — сотых долей м1сек. Если аналогично числу псевдоожижения Nn ввести число Nn как отношение максимальных и минимальных скоростей, при котором сохраняется отличительная особенность данного класса дисперсных систем (одновременный и непрерывный проход компонентов), то для сквозных потоков получим Л п.макс, ИС-числяемое величиной в 4—5 порядков, т. е. Л п.макс  [c.19]


При наличии в воздухе частиц хлористых солей (в частности, в морской атмосфере) больщииство технических металлов и сплавов подвергается усиленной коррозии. Некоторые примеси в воздухе могут усиливать коррозию одних металлов и не оказывать влияния на другие. Так, медь и медные сплавы подвергаются усиленной коррозии при наличии в атмосфере даже небольших количеств паров аммиака, никель же в этих условиях не разрушается. Во влажном воздухе, даже загрязненном 502, НгЗ и некоторыми другими газами, свинец не подвержен коррозии, так как на его поверхности образуется защитная пленка.  [c.180]

Начало изучения технологических процессов, т. е. рациональных способов обработки заготовок на станках, обеспечивающих получение готового изделия, соответствующего по размерам, форме и качеству поверхности заданным требованиям, относится к первым годам прошлого столетия. В 1804 г. акад. В. М. Севергин сформулировал основные положения о технологии процессов, в 1817 г. проф. Московского университета И. А. Двигубский издал книгу Начальные основания технологии, как краткое описание работ на заводах и фабриках производимых . Первым капитальным трудом по технологии металлообработки стал трехтомник проф. И. А. Тиме Основы машиностроения. Организация машиностроительных фабрик в техническом и экономическом отношении и производстве в них работ (1885 г.). Автор этого труда впервые сформулировал основные законы резания и установил правильное понимание сущности этого процесса как последовательного скалывания отдельных частиц металла. Исследования И. А. Тиме легли в основу науки о резании металлов, которая получила широкое развитие в нашей стране после Великого Октября.  [c.6]

Л/2Н = 47,6 частицы MgO размером 35 мк в воздухе технически чистая латунная труба внутреншш диаметром 127 лш . и = 42,7 м/сек, число Рейнольдса для воздуха  [c.162]

К р а й б е л, Траекторпя частиц в газовой центрифуге, Труды амер. об-ва инж.-мех., сер. Д, Техническая механика, № 3, 24 (1961).  [c.512]

Подшипники, смазка которых не может быть гарантирована или недопустима по техническим условиям (например, высокие и низкие температуры некоторые агрессивные среды машины, где смазка может вызвать порчу продукции, н т. п.), выполняют из материалов на основе фторопласта-4. Фторопласт-4, как материал для подшипников, обладает уникальным комплексом свойств низкий коэффициент трения (/ 0,5.. . 0,1) широкий диапазон рабочих температур малая набухаемость, высокая химическая стойкость и др. Однако широкому его применению для изготовления подшипников препятствовали низкие нагрузочная способность и теплопроводность. Для повышения нагрузочной способности и теплопроводности создан новый антифрикционный материал — металлофторо-пласт (рис. 3.153), состоящий из стальной основы / и тонкого слоя (0,3.. . 0,4 мм) 2 сферических частиц бронзы, поры между которыми  [c.415]

Удар является распространенным явлением, которое возникает при рассмотреиип движения как макроскопических тел, так и микроскопических частиц, например, молекул газа. Таким образом, явление удара играет существенную роль в ряде технических и физи-....х.ууу/уу/у ческих задач. Природа удара существенно за-V/////////y//////////A висит от физической структуры соударяющих-Рис. 8.12 ся тел.  [c.126]

Пределы, в которых должна изменяться частота ускоряющего напряжения в резонансном циклическом ускорителе или фазотроне, как видно из (8.27), тем больше, чем больше конечная кинетическая энергия частиц по сравнению с их энергией покоя. Однако когда речь идет о питании системы электродов напряжением высокой частоты, быстрое изменение этой частоты в широких пределах представляет собой технически очень сложную задачу. Поэтому синхроциклотроны применяются главным образом для сообщения тяжелым частицам энергии, которая не превышает существенно энергии покоя частицы. Тогда требуемое уменьшение частоты питающего напряжения за время ускоре-нпя группы частицсоставляет лишь десятки процентов, что практически вполне осуществимо. Вместе с увеличением периода обращения по мере увеличения энергии частиц, как видно из (8.23), увеличивается и радиус их орбит.  [c.220]

Из формулы Циолковского (31.9) следует, что при относительной скорости истечения газов (отбрасывания частиц тоилпва) Уд = 2 км/с и отношении начальной массы ракеты к ее конечной массе, равном Мо/М = 3,5, скорость ракеты равна 2,5 км/с. Расчеты показали, что для получения скорости полета искусственного спутника Земли 8 км/с, нужно либо добиться скорости истечения газов, равной 6,4 км/с, либо начальная масса ракеты должна быть в 45 раз больше конечной. Оба эти условия технически трудно осуществимы. Например, масса космического корабля Восток , как известно, была 5 т и, следовательно, для вывода этого корабля на орбиту потребовалась бы одноступенчатая ракета массы 225 т.  [c.111]

В век научно-технической революции бурно развиваются все отрасли промышленности и каждая из них нуждается в новых материалах, обладающих различными физико-механическими свойствами. Для авиации, например, нужны легкие и прочные материалы, получаемые на основе алюминия и титана. Судостроению необходимы материалы высокой прочности и с хорошими антикоррозийными свойствами, а атомному энергостроению — материалы, не теряющие прочностных характеристик в результате непрерывной бомбардировки тяжелыми частицами внутренней структуры оболочек, закрывающих атомный реактор и т. д. Современная технология пока не позволяет получать в широком масштабе абсолютно чистые металлы, обладающие значительно более высокими прочностными характеристиками, чем металлы, используемые в практике. Процесс же получения чистых металлов и совершенствования их свойств бесконечен, а следовательно, исследование этих свойств требует все более точных методик, машин и установок.  [c.48]

Физика элементарных частиц занимает особое место не только в ядерной физике и даже не только в физике вообще, но и в науке в целом. Эта выделенность состоит в том, что в других областях физики, таких как физика плазмы, физика твердого тела, ядерная спектроскопия и т. д., основные фундаментальные законы уже установлены. Это не значит, конечно, что развитие этих наук приблизилось к завершению. Напротив, в этих областях открывается большое количество новых и интересных явлений, находяш,их важные технические приложения полупроводники, лазеры, эффект Мёссбауэра и др. В физике элементарных частиц изучаются явления, фундаментальные законы которых не установлены.  [c.273]

Преимущества сцинтилляционных счетчиков таковы. Во-первых, у них высока эффективность регистрации, равная почти 100% для заряженных частиц и 30% для у-квантов. Во-вторых, у сцинтилляционных счетчиков очень мало разрешающее время, предел которого определяется длительностью люминесцентной вспышки. Продолжительность вспышки зависит от вещества сцинтиллятора. Для неорганических кристаллов, таких как Nal, это время имеет порядок 10" с, для органических кристаллов (антрацен, нафталин) — примерно 10" с, для пластических сцинтилляторов доходит до 10"° с. Поэтому неорганические и особенно пластические сцинтилляторы особенно хороши там, где требуется высокое разрешение по времени. Третьим преимуществом люминесцентного счетчика является возможность измерения энергии как заряженных частиц, так и у-квантов. Для измерения энергии более пригодны неорганические кристаллы, так как в органических кристаллах и пластиках плохо выполняется линейность зависимости интенсивности вспышки от энергии первичной частицы. Но даже и в счетчиках с неорганическими кристаллами энергия измеряется с точностью порядка 10% в области энергий от сотен кэВ и выше и с точностью порядка 50% в области десятков кэВ. Сцинтилляционным счетчиком можно измерять не только энергию, но и скорость тяжелых заряженных частиц с энергиями в области десятков МэВ. Для этого используется тонкий кристалл. В таком кристалле измеряется не вся энергия частицы, а лишь потеря энергии на расстоянии толщины кристалла, т. е. —dE/dx. А это и есть измерение скорости (см. гл. VIII, 2, формула (8.24)). Если же на пути частиц поставить комбинацию из тонкого и толстого кристаллов, то можно измерить энергию и скорость, т. е. энергию и массу. Таким путем можно легко отделять, например, протоны от дейтронов, измеряя в то же время энергии и тех, и других частиц. Как недостаток сцинтилляционных счетчиков отметим то, что с ними труднее работать, чем с газоразрядными. Например, кристалл Nal очень гигроскопичен и боится больших потоков света. Поэтому этот кристалл приходится тщательно герметизировать и экранировать от наружного освещения. Сцин-тилляционный счетчик сейчас является одним из основных типов детекторов как в самой ядерной физике, так и в ее технических приложениях. В сцинтилляционных счетчиках в качестве рабочего вещества иногда используются жидкие прозрачные сцинтилляторы, которые могут иметь неограниченно большой эффективный объем (вырастить большой кристалл трудно).  [c.501]


Метод исследования движения жидкости, применяемый в гидравлике. Метод Лагранжа ввиду его сложности не нащел широкого применения в технической механике жидкости. Далее в основном будем пользоваться методом Эйлера. Однако, применяя его, все же не будем соверщенно отрекаться от рассмотрения движения частиц жидкости М. Мы будем следить за их движением, но не в продолжение времени t (как это следует по Лагранжу), а в продолжение только элементарного отрезка времени dt, в течение которого данная частица жидкости проходит через рассматриваемую точку пространства.  [c.73]

Природу пробоя загрязне н ных и технически чистых жидкостей определяют пр о цессы, связанные с движением и перераспределением частиц примесей. Под действием высокого напряжения эти процессы приводят к возникновению таких вторичных явлений, как образование мостиков из твердых частиц или пузырьков газа, т.е. проводящих каналов.  [c.122]

Г. И. Сканави). В состоянии поставки технически чистые трансфор маторные масла содержат в 1 м от 10 до 10 микрочастиц с размером до 100 мкм, среди которых больше всего содержится частиц с размерами от 2 до 10 мкм, т. е. частиц коллоидного размера. Такие частицы абсорбируют на свою поверхность имеющиеся в жидкости ионы, заряжаются и обусловливают перенос заряда, т. е.  [c.142]

Во многих д.чэлектриках, используемых в электрической изоляции, величина р сильно зависит от их увлажнения. Даже малое количество влаги, поглощенное гигроскопическим образом, может существенно уменьшить его сопротивление. Молекулы воды хорошо диссоциируют на ионы, в воде растворяются частицы примесей, обычно содержащихся в технических диэлектриках солей, остатков ка гализагоров, кислот, щелочей и других трудно устранимых из материала ионогенных веществ. Влага с растворенными ионоген-иыми примесями проникает в поры и микротрещины, впитывается капиллярами, распределяется по границам раздела в многокомпонентном диэлектрике. Количество поглощенной изоляцией влаги. 1ЙВИСИТ от влажности окружающего воздуха и времени выдержки -образца во влажной атмосфере или в воде, если изоляция работает в контакте с водой. Процесс уменьшения Pt, изоляции имеет обратимый характер. При высушивании поглощенная влага удаляется и р,, возрастает. Для предотвращения увлажнения изоляции поверхность гигроскопичных материалов защищается не смачиваемыми водой водостойкими материалами, препятствующими проникновению влаги. Например, пористые электрокерамические материалы покрываются глазурью пористые диэлектрики пропитываются жидкими или твердеющими компонентами, которые плохо увлажняются.  [c.144]

Техническая термодинамика, основные по южения которой изложены в предыдущих главах, является одним из разделов макроскопической физики и описывает изучаемые объекты в рамках четырех-ме-рного пространства — времени. Энергия и вещество принимаются при этом в виде непрерывных функций величин, определяющих вещество, характеризуют его только в целом и не имеют смысла в применении к отдельным частицам, составляюни1м это вещество К числу таких величин относятся давление, температура, объем и др. Термодинамические методы исследования тепловых процессов наглядны и дают достаточно достоверные результаты, подтверждаемые многочисленными опытами.  [c.424]

В первом случае явления изучаются с макроскопических позиций, во втором случае изучаются закономерности молекулярных и внутримолекулярных процессов. Рассмотрение термодинамических явлений как макрофиэнческих, характеризуемых суммарными эффектами независимо от лежащих в их основе микрофизических процессов, допустимо лишь в том случае, если объемы изучаемых веществ достаточно велики по сравнению с размерами их элементарных частиц и расстояниями между ними. Если рассмотрение термодинамических явлений ведется при соблюдении этих условий, то вещество, участвующее в изучаемых явлениях, можно рассматривать не как совокупность отдельных элементарных частиц, а как непрерывную среду, что и позволяет абстрагироваться от микроструктурных процессов. Техническая термодинамика базируется в основном на феноменологическом методе рассмотрения охватываемых ею явлений.  [c.11]


Смотреть страницы где упоминается термин Технические частиц : [c.190]    [c.355]    [c.30]    [c.30]    [c.183]    [c.70]    [c.162]    [c.415]    [c.401]    [c.656]    [c.186]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.1147 ]



ПОИСК



Ускорители заряженных частиц Технические линейный — Принцип действия

Ускорители заряженных частиц — Технические характеристики



© 2025 Mash-xxl.info Реклама на сайте