Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ускорители циклические

Применяется также циклический резонансный ускоритель электронов— микротрон, в котором электроны, запущенные в вакуумную камеру, движутся по окружностям. Его особенностью яв-  [c.124]

Для ускорения протонов обычно применяются линейные ускорители со специальными дрейфовыми цилиндрами (трубками), в зазорах между которыми и ускоряются протоны, а внутри цилиндров онн свободно дрейфуют. Длина трубок подбирается так, чтобы протоны пролетели зазоры в то время, когда поле направлено по движению протонов. Протонный линейный ускоритель с энергией до ИХ) Мэе обычно используется в качестве инжектора в циклических ускорителях больших энергий.  [c.63]


Для ускорения электронов применяются линейные ускорители с бегущей волной. Ускоритель представляет собой волновод с )аз-мещенными в нем дисками с диафрагмами, назначение которых снизить фазовую скорость электромагнитной волны. Ускоряемая частица (электрон) все время находится вблизи гребня такой волны и непрерывно ускоряется. Линейные электронные ускорители успешно конкурируют с циклическими ускорителями.  [c.63]

Циклические резонансные ускорители. В ускорителях этого типа траектория частиц искривляется действием наложенного управляющего магнитного поля, принимая форму окружности или плоской спирали, при этом ускоряемая частица многократно проходит через один и тот же ускоряющий промежуток. Время между двумя последующими прохождениями частицы через ускоряющий промежуток должно равняться (или быть кратным) периоду изменения ускоряющего поля.  [c.63]

В зависимости от характера ускоряющего электрического поля и управляющего магнитного поля циклические резонансные ускорители подразделяются на следующие типы  [c.63]

По характеру используемой фокусировки циклические резонансные ускорители делятся на ускорители с сильной (жесткой) и слабой фокусировкой.  [c.63]

Циклические индукционные ускорители — бетатроны предназначены для ускорения электронов. Электроны в нем ускоряются вихревым электрическим полем, индуцируемым при изменении во времени магнитного потока, проходящего через орбиту ускоряемого электрона.  [c.64]

Рассмотрим принцип действия некоторых ускорителей. Циклотрон был сконструирован Э. Лоуренсом с сотрудниками в 1931 г. и явился первым циклическим ускорителем. В однородное  [c.64]

Сообщить электрически заряженным частицам большие скорости можно только с помощью электрического поля. Магнитное поле, как уже отмечалось, не изменяет величины скорости, так как сила, действующая со стороны этого поля, всегда нормальна к скорости частицы и поэтому изменяет лишь направление скорости. Если в ускорителях частиц применяется только электрическое поле, то движение частиц происходит по прямолинейным траекториям, вдоль которых на частицы действует ускоряющее электрическое поле. Применяя также и магнитное поле, можно заставить ускоряемые частицы двигаться по круговым (или близким к круговым) траекториям. Но по-прежнему для ускорения частиц необходимо применять электрическое поле, которое в этом случае должно действовать вдоль круговой траектории или отдельных ее участков. В соответствии с этим ускорители, в которых применяется только электрическое поле, называют линейными, а в которых применяется также и магнитное поле — циклическими.  [c.209]


Общей чертой всех циклических ускорителей являются, как уже указывалось, близкие к круговым траектории (орбиты) частиц, получающиеся в результате движения частиц в магнитном поле, направленном перпендикулярно к их скорости. Метод же ускорения частиц в большинстве циклических ускорителей применяется тот же, что и в линейных ускорителях с переменным электрическим полем. Вакуумная камера, в которой движутся частицы, имеет форму цилиндра (диаметр которого много больше его высоты), расположенного между полюсами электромагнита так, что ось цилиндра совпадает с направлением магнитного поля. Камера покрыта электропроводящим слоем, в котором по радиусам сделаны изолирующие разрезы (в простейшем случае  [c.217]

Орбита частицы при этом не будет оставаться постоянной. Как видно из (8.16), с увеличением скорости радиус орбиты частицы будет возрастать. Поэтому частица будет двигаться по дуге окружности только в пределах участка между ускоряющими промежутками, где ее скорость не изменяется. В ускоряющем промежутке, где ее скорость возрастает, частица будет переходить на дугу окружности большего радиуса (соответствующего скорости частицы после прохождения промежутка). Таким образом, траектория частицы будет состоять из дуг окружностей постепенно увеличивающегося радиуса, соединенных небольшими участками, по которым частица переходит с одной дуги на другую. Так как частицы должны пролетать ускоряющие промежутки в определенные короткие интервалы времени (так же как и в случае линейного ускорителя), то они движутся по этим траекториям не сплошным потоком, а отдельными сгустками, занимающими малую долю каждой дуги окружности. По такому принципу был построен первый циклический ускоритель, который был назван циклотроном.  [c.218]

Существуют циклические ускорители, в которых для ускорения частиц используется только это электрическое поле индукции, а ускоряющие промежутки отсутствуют. В таких ускорителях в течение всего процесса ускорения сгустка частиц магнитное поле возрастает, и поэтому направление электрического поля индукции остается неизменным частицы в течение всего времени движения по орбите ускоряются  [c.219]

П2, а). В случае же орбит постоянного радиуса магнитное поле должно быть создано только в тонком кольце, радиус которого определяется постоянным радиусом орбиты (рис. 112,6). Из сопоставления форм сечения сердечника электромагнита (на рис. 112 сечения заштрихованы), необходимых для получения магнитного поля в том и другом случае, видно, что гораздо меньше стали требуется для сердечника и соответственно мощности для питания электромагнита в случае орбит постоянного радиуса, т. е. существенно упрощается и удешевляется наиболее сложная и дорогая часть всякого циклического ускорителя — электромагнит.  [c.221]

Как уже указывалось, потери на излучение быстро растут с увеличением ускорения частицы. В циклических ускорителях центростремительное ускорение пропорциональна квадрату скорости. А так как при данной энергии скорость частицы тем больше, чем меньше ее масса покоя, то потери на излучение при ускорении электронов становятся заметными при значительно меньших энергиях, чем при ускорении протонов (или еще более тяжелых част ц). Практически в современных ускорителях потери на излучение кладут предел увеличению энергии только для электронов (этот предел составляет около 10 Гэв). Потери на излучение даже в наиболее мощных современных ускорителях протонов (или более тяжелых частиц) практически роли не играют. Для данного типа частиц потери энергии на излучение в циклическом ускорителе быстро уменьшаются с уменьшением энергии частицы. Потери энергии электроном за один оборот при очень большой энергии (Т т с ) составляют примерно 6 f Т  [c.223]

Уравнение моментов для частиц в циклическом ускорителе  [c.310]

В циклических ускорителях момент импульса частицы относительно оси магнитного поля (которое во всех циклических ускорителях имеет осевую симметрию) увеличивается под действием момента сил ускоряющего поля относительно той же оси. Эти силы действуют вдоль орбиты в большинстве случаев не на всем ее протяжении, я только на отдельных участках — в ускоряющих промежутках. Однако вследствие того, что момент импульса частицы за один ее оборот по орбите возрастает незначительно, а число оборотов, совершаемых частицей, пока она достигает максимальной энергии, очень велико (10 и более), момент силы, действующей в ускоряющих промежутках, можно считать равномерно распределенным по орбите.  [c.310]


УРАВНЕНИЕ МОМЕНТОВ ДЛЯ ЧАСТИЦ В ЦИКЛИЧЕСКОМ УСКОРИТЕЛЕ 311  [c.311]

Форму тора имеют баки ракетных двигателей (с жидким топливом или с окислителем), корпуса цирк> лярных насосов высокого давления, вакуумные камеры циклических ускорителей и т.д.  [c.8]

В свою очередь ускорители многократного действия делятся на линейные и циклические. В линейных ускорителях частицы движутся по прямой, а в циклических — по окружности или спиралям.  [c.470]

Бетатрон — циклический ускоритель электронов. Действие его основано на законе электромагнитной индукции, согласно которому вокруг  [c.298]

В 1964 г. в Харьковском физико-техническом институте была закончена постройка крупнейшего электронного линейного ускорителя на 2 Гэв (рис. 43), а в 1966 г. в Ереванском физическом институте завершено сооружение еще более мощного циклического ускорителя электронов, на б Гэв. Наконец, в 1967 г. в Серпухове (под Москвой) закончено строительство и осуществлен первый пуск крупнейшего в мире протонного синхротрона на 70 Гэв с жесткой фокусировкой и с замкнутой системой электромагнитов общей длиной 1483 м.  [c.155]

Мощными источниками ядерных излучений являются специальные ускорители и ядерные реакторы. В СССР ведется изготовление промышленных ускорителей заряженных частиц, поставляемых производственным предприятиям и исследовательским учреждениям. Так, например, в 1966 г. вошла в эксплуатацию одна из новых облучающих установок этого типа —бетатрон (циклический ускоритель электронов), разработанный Томским политехническим институтом,— с двумя ускорительными камерами, генерирующими два скрещивающихся электронных пучка. Соответственно расширяется строительство специализированных производственных реакторов, используемых для облучения различных материалов. Так, с 1959 г. в Институте физики Академии наук Грузинской ССР находится в эксплуатации реактор со специальным ин-дий-галлиевым теплообменным контуром для облучения материалов и для других целей. Специализированными производственными реакторами располагают и другие атомные центры Советского Союза.  [c.189]

Синхротрон — кольцевой (циклический) резонансный ускоритель электронов с фиксированной орбитой их обращения и постоянной частотой ускоряющего электрического поля, но с адиабатически нарастающим управляющим магнитным полем. Синхротрон сов-ме цает в себе действия бетатрона и принцип действия циклотрона.  [c.70]

Движение ускоряемой частицы (протона, электрона) в циклических ускорителях в действительности является сложным. Дело в том, что наличие квазиупругих сил, возвращающих частицу на орбиту (если частица почему-либо отклонится от предвычисленной орбиты, составленной из дуг радиуса г = mv/eB t, R)), и пропорциональных отклонениям х п z, приводит к тому, что ускоряемая частица в процессе своего движения колеблется около предвычисленной орбиты. Эти колебания называются бетатронньши (так как первоначально были исследованы для движения электронов в бетатроне) или свободными. В случае малых отклонений бетатронные колебания описываются линейными уравнениями  [c.72]

Новые возможности иолучения интенсивных пучков быстрых и медленных нейтронов появились после изобретения циклических ускорителей заряженных частиц и ядерных реакторов. В ускорителях получаются быстрые нейтроны при помощи (а, п)-, р, п)- или [d, п)-реакций, идущих при соударении ускоренных а-частиц, протонов или дейтонов с мишенью. В наиболее распространенных типах ядерных реакторов получаются медленные (в основном тепловые) нейтроны, которые образуются в результате замедления нейтронов, испускаемых в процессе деления ядер урана или другого ядерного горючего. В обоих случаях получаются пучки нейтронов несравненно большей интенсивности, чем с помощью нейтронных источников. В особенности интенсивные пучки нейтронов 10 нейтрКсм сек) позволяют получать ядерные реакторы, работающие в импульсном режиме.  [c.286]

Пределы, в которых должна изменяться частота ускоряющего напряжения в резонансном циклическом ускорителе или фазотроне, как видно из (8.27), тем больше, чем больше конечная кинетическая энергия частиц по сравнению с их энергией покоя. Однако когда речь идет о питании системы электродов напряжением высокой частоты, быстрое изменение этой частоты в широких пределах представляет собой технически очень сложную задачу. Поэтому синхроциклотроны применяются главным образом для сообщения тяжелым частицам энергии, которая не превышает существенно энергии покоя частицы. Тогда требуемое уменьшение частоты питающего напряжения за время ускоре-нпя группы частицсоставляет лишь десятки процентов, что практически вполне осуществимо. Вместе с увеличением периода обращения по мере увеличения энергии частиц, как видно из (8.23), увеличивается и радиус их орбит.  [c.220]

В левой ч стн этого уравнения, вooбu 1оворя, переменными являются не только О), но также R и у, так как скорость и радиус орбиты постепепно возрастают (при этом (I), V и связаны соотношением и = (oR). Только в тех случаях, когда ускорение частиц происходит по орбитам постоянного радиуса (например, при ускорении электронов в синхротронах), / в уравнении (10.23) есть величина постоянная. Однако, поскольку во всех циклических ускорителях радиус орбит если и не остается постоянным, то увеличивается очень медленно (за весь процесс ускорения частицы делают ие менее 10 оборотов и, следовательно, изменение радиуса за один оборот не превышает долей процента), можно для каждого отдельного оборота частицы считать R в урапнении (10.23) постоянным тогда из этого уравнения можно найти среднее угловое ускорение частицы, считая его так же равномерно распределенным по орбите, как и момент силы.  [c.311]

Микротрон — это циклический резонансный ускоритель электронов постоянным во времени и однородным магнитным полем (рис. 6.14, в) Электроны, запущенные в вакуумную камеру 2, движутся по окружности различного радиуса, ускоряясь магнитным полем, попадают на мишень 3, в которой возникает тормозное рентгеновское излучение. Основное преимущество микротрона заключается в высокой интенсивности излучения и малой расходимости пучка. Эффективное фо1д/сное пятно составляет 2...3 мм. В промьшшенности применяют микротроны МТ-10, МТ-20, МР-30, РМД-1 ОТи др. Цифры обозначают энергию ускоренных электронов в МэВ. Мощность экспозиционной дозы излучения составляет от 2000 до 16 ООО Р/мин на расстоянии  [c.161]


Основным типом ускорителя прямого действия является генератор Ван-де-Граафа, работающий в непрерывном режиме. Все линейные ускорители являются импульсными. К циклическим ускорителям относятся циклотрон, его усовершенствованные варианты — фазотрон, синхротрон, синхрофазотрон, изохронный циклотрон, а также бетатрон и микротрон. Из них циклотрон и изохронный циклотрон обычно являются ускорителями непрерывного действия, микротроны могут работать как в непрерывном, так и в импульсном режиме, а все остальные циклические ускорители — существенно импульсные.  [c.470]

Ускорение тяжелых частиц обычно целесообразнее производить на кольцевых ускорителях. Но из-за большой интенсивности и простоты выпуска частиц инжекторы (т. е. предускори-тели) гигантских циклических ускорителей тяжелых частиц являются линейными. Так, на циклическом ускорителе в Серпухове в качестве инжектора используется линейный ускоритель протонов на 100 МэВ (см. ниже п. 9).  [c.472]

Классическим типом циклического ускорителя является циклотрон (Э. О. Лоуренс, 1931). В циклотроне существенно используется тот факт, что согласно (9.2), (9.3) для нерелятивистской частицы в постоянном однородном магнитном поле радиус орбиты пропорционален скорости, а период обращения не зависит от энергии. Принцип действия циклотрона таков (рис. 9.2). Ускоряющая камера 1находится в сильном однородном магнитном поле. Частицы попадают  [c.472]

Верхний предел энергии, достигаемый на фазотроне, определяется не физическими, а экономическими ограничениями и равен примерно 1 ГэВ. Дело в том, что в соответствии с (9.2) при скоростях, близких к с, радиус орбиты пропорционален энергии. Ъэтому вес магнита пропорционален кубу энергии, так как магнитное поле должно создаваться во всей камере от центра до краев. Магнит делается из высококачественного трансформаторного железа и является самой дорогой частью ускорителя. Тем самым стоимость фазотрона, грубо говоря, пропорциональна кубу энергии. Из-за этого для получения частиц с энергиями от 1 ГэВ и выше используют кольцевые циклические ускорители, в которых частицы разгоняются не по спирали, а по кольцу, что приводит к значительному снижению веса магнита, т. е. стоимости. В области от 25 до сотен МэВ фазотронный метод ускорения протонов, дейтронов и а-частиц сейчас является основным.  [c.474]

Микротрои — циклический ускоритель с переменной кратностью ускорения. В микротроне частицы движутся в постоянном и однородном магнитном поле. Ускорение происходит под действием переменного электрического поля постоянной частоты. Электровьт, находящиеся в вакуумной камере, движутся по орбитам — окружностям, имеющим общую точку касания. В  [c.303]

Просвечивание изделий Фотообработка ра- диографических снимков Расшифровка радиографических снимков Рентгеновские аппараты, гамма-дефектоскопы, линейные и циклические ускорители, источники нейтронов (реакторы, генераторы), пленки радиографические, экраны усиливающие Кюветы, баки-танки, автоматы Для фо-тообработки, сушильные шкафы Негатоскопы, денситометры, микрофотометры, мерительные лупы, автоматы для считывания снимков Штативные устройства, эталоны чувствительности, знаки маркировочные, кассеты гибкие и жесткие держатели кассет, приспособления для резки пленок Фонари неактиничного света, оборудование для приготовления растворов (весы, баки, мешалки, фильтры, дистилляторы), оборудование для отделения серебра, рамки и кассеты для проявления пленок, лабораторная мебель (стеллажи, шкафы, столы) Эталоны плотностей почернения, атласы радиографических снимков дефектных изделий, лабораторная мебель (столы, шкафы для архива пленок)  [c.314]

Ускорители заряженных частиц — установки, в электромагнитных полях которых искусственно увеличивается скорость движения и соответственно возрастает кинетическая энергия частиц (электронов, протонов и др.). Применительно к форме траекторий полета частиц различают циклические ускорители (циклотроны, синхротроны, фазотроны и пр.), в которых частицы движутся по траекториям, близким к окружности или раскручивающейся спирали, и линейные ускорители, в которых движение частиц осуществляется по траекториям, близким к прямой линии. Первый электромагнитный резонансный ускоритель частиц был предложен и построен в первой половине 30-х годов американским физиком Э. Лоренсом.  [c.150]

Смолы на основе сложных виниловых эфиров. Производство этих смол началось в конце 60-х годов. Катализаторы и ускорители, используемые со смолами на основе сложных виниловых эфиров, аналогичны тем, что применяются для полиэфиров. Фактически назначение этих смол аналогично полиэфирам. Изделия на их основе чрезвычайно удобны при работе с хлоркаустиком и окисляющими кислотами при повышенных температурах. Сообщалось, что смолы на основе сложных виниловых эфиров обладают повышенной абразивной стойкостью и стойкостью к циклическому изменению температур и давления. Некоторые фирмы-производители предлагают использовать трубопроводы, воздуховоды и емкости на основе этих смол как стандартные конструкции. Существует башня для хлора, изготовленная методом намотки с использованием смолы на основе сложных виниловых эфиров в качестве связующего, высота которой составляет 27,4 м, а диаметр 5,5 м. Транспортировка башни осуществлялась морем, так как фирма-изготовитель и место установки башни располагались на морском поберен ье.  [c.320]


Смотреть страницы где упоминается термин Ускорители циклические : [c.418]    [c.217]    [c.217]    [c.219]    [c.220]    [c.221]    [c.223]    [c.526]    [c.199]    [c.200]    [c.200]    [c.361]    [c.21]   
Ядра, частицы, ядерные реакторы (1989) -- [ c.47 ]



ПОИСК



Ускорители

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте