Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы металлорежущих станков - Схемы

Рис, 38. Схема гидравлического механизма металлорежущего станка  [c.71]

Характеристика приводов и механизмов металлорежущих станков 423 Кинематическая схема  [c.423]

Третье издание альбома (2-е изд. 1965 г.) дополнено условными обозначениями для кинематических и гидравлических схем, типовыми механизмами металлорежущих станков и описанием конструкции и кинематики делительных головок.  [c.2]


В третьем издании существенно увеличено количество приведенных в таблицах условных обозначений на кинематических схемах и пояснений по их применению. Впервые даны условные обозначения на гидравлических схемах. Представлен новый раздел — Типовые приводы и механизмы металлорежущих станков . Все общие виды станков даны в третьем издании в аксонометрии и в красках, что облегчает читателям создать себе полное представление о внешнем виде, общей компоновке и архитектонике современных металлорежущих станков.  [c.5]

Относительные движения, которые сообщаются детали и инструменту исполнительными механизмами металлорежущего станка, группируются в кинематические схемы формообразования. Степень общности кинематических схем формообразования может быть установлена путем введения в рассмотрение соответствующего критерия.  [c.139]

Под кинематической схемой металлорежущего станка понимают условное изображение всех механизмов и передач, которые передают движение от привода к исполнительным органам станка.  [c.288]

Конический дифференциал. Этот механизм широко используется в автомобилях, тракторах, металлорежущих станках, счетно-решающих устройствах. На рис. 9.2 изображена схема автомобильного дифференциала. Он состоит из конических  [c.185]

Если в общей схеме положить длину шатуна /а = О, то получим симметричный кулисный механизм (рис. IX.5, б), весьма распространенный в строгальных металлорежущих станках и используемый в них для перемещения стола, на котором закрепляется обрабатываемое изделие. Такие же механизмы применяются и в других машинах, например в плоскопечатных для привода стола машины, на котором устанавливается печатная форма.  [c.150]

Первое положение иллюстрируется принципиальными схемами и графиками (фиг. 376—378), на которых показано, как влияет различное конструктивное оформление механизмов переключения коробок скоростей и подач металлорежущих станков на трудоемкость и экономичность их изготовления.  [c.466]

Для машин многих типов (к числу которых относятся горные и сельскохозяйственные комбайны, металлорежущие станки и др.) характерны разветвленные кинематические схемы, где от одного двигателя получают движение несколько исполнительных механизмов (см. рис. 7. 4). Определение собственных частот колебаний редукторов подобных машин несколько сложнее.  [c.258]

Кроме того, в справочнике имеются сведения об основных видах смазывающе-охлаждающих жидкостей, применяемых при различных видах обработки в зависимости от обрабатываемого материала, а также основные характеристики и нормы расхода смазочных материалов, для различного вида металлорежущих станков. В разделе, посвященном механизации и автоматизации процессов обработки, описываются основные автоматизирующие устройства, приводятся схемы и указываются области применения магазинных устройств, отсекателей, питателей, механизмов захвата и ориентации, автоматизированных средств контроля и управления процессом.  [c.3]


Холостой ход — Кривые 9 — 103 Механизмы кулачковые металлорежущих станков централизованного управления 9—105 113 Схемы 9 — 113  [c.154]

Механизмы кулисно-кулачковые металлорежущих станков с последовательным включением скоростей и с двумя переключающими валами централизованного управления — Схемы 9—114  [c.154]

По мере совершенствования механического суппорта, системы зубчатых передач, механизма подачи, зажимных устройств и некоторых других конструктивных элементов кинематической схемы металлорежущие станки превращаются во все более развитые машины. В 70-х годах XIX в. машиностроение уже располагало основными рабочими машинами, позволявшими производить механическим способом важнейшие металлообрабатывающие операции.  [c.19]

Используется для передачи вращающемуся в одном направлении валу более быстрого вращения в обоих направлениях например, в механизмах быстрых перемещений металлорежущих станков муфта позволяет включать быстрые вспомогательные движения в обоих направлениях частей (суппорт, стол и т. п.), имеющих медленное движение подачи в одном направлении (см. схему)  [c.236]

При выборе схемы существенным является не только величина скорости и нагрузки, но и характер их действия. Необходимые скорости, а также нагрузка исполнительного движения могут быть различны в зависимости от направления движения, т, е. могут иметь асимметричный характер. С подобным положением мы сталкиваемся на некоторых металлорежущих станках, например копировально-токарных, где нагрузка на исполнительный механизм имеет по существу односторонний характер.  [c.243]

Используя обобщенные структурные схемы и методы приведения дифференциальных уравнений к канонической форме, можно разработать универсальные программы для динамического расчета на ЦВМ станочных механизмов. Построим универсальную линейную динамическую модель приводов подач металлорежущих станков и роботов с ЧПУ.  [c.124]

Современный металлорежущий станок имеет систему разнообразных кинематических звеньев. Звеном называется деталь механизма, входящая в соприкосновение с другой деталью (зубчатое колесо, винт, гайка, червяк, червячное колесо и т. п.). Совокупность двух звеньев, ограничивающая их относительное движение, называется кинематической парой. Схематическое условное изображение совокупности кинематических пар от двигательного к исполнительному механизму станка называется кинематической цепью. Схематическое условное изображение кинематических цепей называется кинематической схемой. Кинематическая схема позволяет анализировать движение различных органов станка.  [c.520]

На рис. 155,0, б, в представлены схемы дисковых и барабанных (плоских п пространственных) кулачковых механизмов, применяемых в металлорежущих станках, чаще всего в авто.матах и полуавтоматах.  [c.181]

В тормозных устройствах некоторых грузоподъемных машин (главным образом электроталей) все большее применение находят однофазные электромагниты переменного тока серий МИС-Е и МТ [34, 42], предназначенные для использования в схемах автоматики металлорежущих станков и других машин и механизмов. В основном они применяются для прямолинейного перемещения элементов управления.  [c.59]

Более сложными являются шестизвенные кулисные механизмы (рис. 5.7), получившие применение в металлорежущих станках для обработки плоскостей (продольно-строгальные, долбежные станки и др.). На рис. 5.8 приведена схема ротативного двигателя.  [c.129]

Не рассматривая здесь элементы и электрические схемы электроимпульсных станков, имеющиеся также и в обычных металлорежущих станках (схемы автоматизации установочных перемещений, управления вспомогательными механизмами, путевого контроля, блокировки, защиты, измерения и т. п.), остановимся ниже на схемах управления, специфических только для этого типа станков.  [c.145]


При проектировании механизмов вращательного движения дереворежущих станков обычно ограничиваются вьшолнением расчетов на жесткость рабочих валов и щпиндельных узлов с учетом податливостей валов, шпинделей и подшипниковых опор. Кроме того, осуществляется выбор подшипников качения с проверкой их долговечности [15, 18]. Динамические расчеты амплитудно-частотных и амплитудно-фазово-частотных характеристик, форм колебаний и др. выполняются ддя ответственных тяжелонагруженных и скоростных механизмов при повышенных требованиях к качественным характеристикам обработки. Расчетные схемы, соотношения и зависимости аналогичны используемым при проектировании валов и щпиндельных узлов металлорежущих станков с учетом высокого частотного уровня внешних возмущений.  [c.763]

Скорость электропривода металлорежущих станков находится в прямой зависимости от обрабатываемого материала, формы режущего инструмента, рабочих размеров заготовки, режимов резания и т. д. Одновременно с этим, чем выше точность и шире предел регулирования скорости при стабильном режиме работы станка на различных скоростях и при наименьших затратах, тем рациональнее создание схемы, предназначенной для управления работой любой группы, механизмов или системы.  [c.30]

Стремление к упрощению кинематических схем металлорежущих станков и других производственных механизмов, необходимость получения широкого и плавного диапазона регулирования скорости вращения рабочего электродвигателя привели к созда-  [c.36]

Учитывая разнообразие условий обработки (схем базирования, применяемого режущего инструмента, обрабатываемых деталей, компоновок станков и др.), необходимо найти то общее в механизме возникновения механических колебаний при резании, что присуще в целом каждой технологической системе. Для этого рассмотрим более подробно технологические факторы, приводящие к возбуждению механических колебаний, и особенности их проявления в процессе обработки детали. Влияние технологических факторов на параметры механических колебаний обусловлено тремя этапами процесса обработки детали на металлорежущих станках первый (установка) — координирование и закрепление обрабатываемого объекта производства с требуемой точностью второй (статическая  [c.258]

Шестизвенный кривошипно-кулисный механизм с качающейся и посту-пательно-движущейся кулисой (схема 1 на фиг. 47), а также его модификации, показанные на остальных симах фиг. 47, используются в некоторых металлорежущих (поперечно-строгальных) станках для привода главного движения резания.  [c.500]

Наиболее длинную блок-схему имеют электрические приводы подач с трех-, четырехступенчатым безлюфтовым редуктором. Приводы с электромашинными усилителями (ЭМУ) все реже применяют в механизмах подачи металлорежущих станков. Основным недостатком приводов с ЭМУ является их низкое быстродействие, которое определяет малую производительность обработки. Например, при наличии участков с резкими изломами траектории центра фрезы необходимо программировать замедление для уменьшения динамических ошибок.  [c.119]

Механизмы управления металлорежущих станков 9 — ПО - управления централизованного металлорежущих станков о избирательным вклм-чением скоростей — Схемы 9 — 116 - управления централизованного металлорежущих станков с последовательным включением скоростей — Схемы 9—113 - управления централизованного металлорежущих станков с предварительным выбором скоростей 9—121 - ускоренного перемещения салазок револьверных станков 9 — 299  [c.155]

Схемы механизмов, нашедщих применение в металлорежущих станках, с необходимыми пояснениями приведены в табл. 42.  [c.111]

Индивидуальный электропривод существенно повлиял и на конструкцию самих рабочих машин. Слияние приводного двигателя с исполнительным механизмом получалось иногда настолько тесным, что конструктивно они представляли собой единое целое. Наиболее гармоничная конструктивная связь электропривода со станком осуществлялась при использовании фланцевых электродвигателей, которые выпускались в горизонтальном и вертикальном исполнении и могли непосредственно присоединяться к механизмам станков без промежуточных ременных передач. Фланцевые двигатели получили применение прежде всего для привода высокоскоростных шпинделей сверлильных, расточных, шлифовальных, полировальных и деревообрабатывающих станков. Эффективным оказалось использование в качестве индивидуального привода встроенных электродвигателей и особенно двигателей с изменяемым числом оборотов (регулируемый привод). При электрическом или электромех аническом регулировании скорости создаются возможности значительного упрощения кинематической схемы металлорежущих станков.  [c.29]

Промежуточные устройства преобразуют импульсы, создаваемые датчиками. В качестве промежуточных устройств широко применяют электрические реле. Они рассчитаны на слабые токи и предназначены для замыкания и размыкания контактов, по которым проходят токи значительно большей силы. Реле используют как датчики прерывистого (дискретного) управления исполнительными механизмами посредством электрических сигналов. По принципу действия они могут быть электромагнитными, поляризованными, магнитоэлектрическими и электронными, а в зависимости от числа контактов— двух-, четырехконтактными и более. Применяют также и бесконтактные реле. В зависимости от параметра срабатывания различают реле напряжения, тока, мощности и др. Применяют реле постоянного и переменного тока. В схемах автоматического управления приводами металлорежущих станков широкое распространение получили электромагнитные реле тока и напряжения, поляризованные реле, реле времени и т. д.  [c.160]


Паспорт металлорежущего станка содержит необходимые данные для выбора станка, разработки технологического процесса, режимов обработки, а также для решения вопросов распланировки оборудования и выбора способов модернизации станка. В соответствии с этим паспорт станка включает а) основые данные о станке б) характеристики узлов станка в) габарит рабочего пространства, посадочные и присоединительные базы станка г) число оборотов, окружные скорости и мощности на шпинделе шлифовального круга д) числа оборотов и мощности на шпинделе передней бабки е) схему органов настройки механизма привода шлифовального круга ж) схему органов настройки механизма вращения изделия з) подачи на глубину шлифования.  [c.395]

Одним из методов решения задач динамики машин является кине-тостатический анализ, то есть расчет на основе уравнений статики по схеме, эквивалентной схеме динамического нагружения системы [1]. В излагаемой работе дается обоснование схемы нагружения ползуна, применяемого в исполнительных механизмах поперечно-строгальных, долбежных и других типов металлорежущих станков. В рабочем режиме поперечно-строгального станка на ползун действует система сил, показанных на рис. 1.  [c.404]

При возникновении разности в угловых скоростях полуосей коронная шестерня приходит в движение и действует на регулятор числа оборотов двигателей. В этих условиях работы Д. недупшми валами являются обе его полуоси, а коробка Д. играет роль ведомого вала. В автомобилях, тракторах и танках движение от двигателя через промежуточные механизмы подводится к коробке Д., к-рая в этом случае является ведуцщм звеном, а полуоси Д. — ведомыми валами. Такое включение Д. между валами дает возможность задним ведущи.м колесам автомобиля двигаться без скольжения при повороте последнего. В гусеничных машинах это дает возможность осуществить поворот. В банкаброшах и металлорежущих станках (зуборезных типа Пфаутер, Рейне-кер, в токарно-ватыловочных автоматах и др.) в качестве ведомого вала используется одна из полуосей Д., а другая полуось и коробка Д. являются ведущими. Такая схема включения Д. в систему зубчатых передач дает возможность ведомому валу сообщить два независимых движения одно через полуось, а другое через коробку Д. В металлообрабатывающих станках это необходимо при нарезке шестерен оа спиральными зубьями, для снятия затылков в червячных "фрезах и в других работах.  [c.438]

Для того чтобы инструмент мог удалить с детали припуск, оставленный на обработку, инструменту и детали сообщают движения с определенными направлениями и скоростями. Как показал Г. И. Грановский [15], несмотря на большое число методов обработки и их разнообразие, все они могут быть определены принципиальными кинематическими схемами, которые выражают абсолютные движения, сообщаемые в процессе резания инструменту и обрабатываемой детали механизмами станка. Кинематика рабочих органов металлорежущих станков намного упрощается при использовании принципиальных кинематических схем, основанных на сочетании равномерных дрижений прямолинейных и вращательных. В зависимости от числа и характера сочетаемых движений принципиальные кинематические схемы могут быть разделены на восемь групп I — одно прямолинейное движение II—два прямолинейных движения III—одно вращательное движение IV — одно вращательное и одно прямолинейное движение V — два вращательных движения VI — два прямолинейных и одно вращательное движение VII — два вращательных и одно прямолинейное движение VIII — три вращательных движения. Наибольшее распространение получили принципиальные кинематические схемы с одним прямолинейным движением и с одним прямолинейным и одним вращательным движением.  [c.31]


Смотреть страницы где упоминается термин Механизмы металлорежущих станков - Схемы : [c.566]    [c.215]    [c.346]    [c.236]    [c.103]    [c.26]    [c.76]    [c.163]    [c.223]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.9 , c.113 ]



ПОИСК



МЕХАНИЗМЫ с последовательным включением скоростей централизованного управления металлорежущих станков - Схемы

Металлорежущие станки станки

Механизм Схема

Механизм станка

Механизмы кулисно-кулачковые металлорежущих станков с последовательным включением скоростей и с двумя переключающими валами централизованного управления Схемы

Механизмы кулисно-кулачковые металлорежущих станков с последовательным включением скоростей и с двумя переключающими валами централизованного управления Схемы скоростей консольно-фрезерных станко

Механизмы металлорежущих станков

Механизмы металлорежущих станков качающейся кулисой - Схемы

Механизмы управления металлорежущих станков включением скоростей - Схемы

Механизмы управления централизованного металлорежущих станков о избирательным включением скоростей - Схемы

Станки металлорежущие

Схемы станков

Шерсть - Теплопроводность Шестерённо-реечные механизмы централизованного управления металлорежущих станков - Схемы



© 2025 Mash-xxl.info Реклама на сайте