Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия упругого объемного сжатия

Энергия упругого объемного сжатия 56 Эффект Баушингера 37  [c.420]

Изменение удельной внутренней энергии материала при прохождении пластической ударной волны определяется суммой энергии упругих и пластических деформаций Е —Ей =Ь.еу- -вал, где Абу — возрастание упругой энергии объемного сжатия в ударной волне  [c.165]

Здесь первое слагаемое есть приращение упругой энергии объемного сжатия, второе — приращение работы деформации формы.  [c.43]


Следует отметить, что раньше рассматривались массивные амортизаторы, в тонкослойных конструкциях имеет место другой механизм теплообразования. Температурные напряжения могут быть сравнимы с упругими, необходимо учитывать объемное сжатие материала и потери энергии этой деформации.  [c.25]

Модуль продольной упругости модуль сдвига модуль объемного сжатия Момент силы момент пары сил Работа (энергия) килограмм-сила на квадратный сантиметр килограмм-сила-метр килограмм-сила-метр кгс/см кгс М КГС м ньютон-метр джоуль Н м Дж 1 кгс см -Э.в-Ю- Па 10 Па-0,1 МПа 1 кгс-м 9,8 Н-м —10 И-м 1 кгс-м 9,8 Дж 10 Дж  [c.190]

Очевидно, что сте представляет собой удвоенную упругую энергию объемного сжатия (рис. 211, с).  [c.313]

Как уже отмечалось, вследствие упругой деформации в теле накапливается потенциальная энергия деформации. Удельная потенциальная энергия в случае осевого растяжения или сжатия определяется по формуле (9.6). Для объемного напряженного состояния эта энергия  [c.152]

Объемная вязкость проявляется при сжатии и растяжении жидкости, вызывая сдвиг фаз между объемной деформацией и давлением и рассеяние энергии при упругих колебаниях. Объемная вязкость рабочих жидкостей гидросистем изучена недостаточно и обычно не учитывается при технических расчетах.  [c.99]

Зависимость при небольших деформациях s О, I линейна и содержит обычно только одну постоянную G — модуль сдвига. Модуль упругости для резины Е = 30. Только для тонкослойных элементов необходима вторая постоянная — объемный модуль сжатия К- Для большинства резин G = 6-ь 20 кгс/см , К = (2 3)-10 кгс/см . При деформациях е < 0,5 достаточную точность обеспечивает допущение, что удельная потенциальная энергия /пропорциональна первому инварианту деформаций  [c.216]

Вязкость жидкости (внутреннее трение) — важнейшее свойство, проявляющееся при относительном движении ее частиц. Различают объемную Цу и сдвиговую (тангенциальную) ц вязкости. Объемная вязкость проявляется при сжатии жидкости, вызывая сдвиг фаз между объемной деформацией и давлением, рассеяние энергии при упругих колебаниях она изучена недостаточно и обычно при технических расчетах не учитывается. Сдвиговая вязкость ц (в дальнейшем просто вязкость) обусловлена силами внутреннего трения между взаимно перемещающимися частицами жидкости. Возникающие при этом касательные напряжения т, Па, определяются законом Ньютона — Петрова  [c.26]


Устройства и механизмы, работающие с помощью сжатого воздуха, называются пневматическими. Они имеют много общего с гидравлическими, но в то же время и существенно от них отличаются, поскольку различны свойства самих жидкостей и газов, в частности воздуха. Как известно, жидкости не сохраняют ни объема, ни формы. Если жидкости практически сжимать нельзя, то газы легко сжимаются и расширяются. Воздушными насосами (компрессорами) можно уменьшать объем воздуха, при этом давление его увеличивается. При сжатии воздуха в нем образуется и накапливается особый вид энергии — энергия объемной упругости, способная при расширении производить большую  [c.134]

Величина К, связанная с постоянными Ламе соотношением С= =1+2/з .1, называется модулем всестороннего сжатия. Величину л называют также модулем сдвига. Наличие ненулевого значения [а говорит о том, что твердое тело, в отличие от жидкостей, наряду с объемной упругостью обладает и упругостью формы. Из условия устойчивости упругого тела (условия минимума энергии при 1 =0) следует, что постоянные К всегда положительны. Если разрешить (1.11) или (1.12) относительно м,й, то можно получить связь компоненты й с компонентами сГг . Например, из (1.12) следует  [c.192]

Если касательное напряжение в поперечной волне действует на малую сферическую полость,, то сфера растягивается в одном направлении и сжимается в перпендикулярном направлении. Вследствие этого пространство вблизи сферы разделяется на квадранты с чередующимся сжат 1ем и растяжением, поэтому температурный градиент возникает на расстояниях, примерно равных радиусу сферы. Поглощаемая тепловым потоком энергия на единицу объема характеризуется параметром 05, который приближенно пропорционален пористости- Как функция частоты, этот параметр имеет широкий максимум, если эффективная глубина примерно равна половине радиуса сферы. Для кварца, например, максимальное поглощение наблюдается при 100 Гц, если радиус сфер равен нескольким десяткам миллиметра. Удивительно, что в случае чистого сжатия пород, содержащих сферические полосы, каких-либо потерь энергии из-за температурного градиента не наблюдается, следовательно, объемный модуль (модуль всестороннего сжатия) К пористых сред является чисто упругим. Поглощение продольных волн полностью обязано неидеальной упругости модуля сдвига. Как было установлено, отношение 9р/9з зависит только от коэффициента Пуассона V для упругой среды и V для пористой среды. В любом случае параметры 0р и 0 прямо пропорциональны абсолютной температуре.  [c.140]

Иайти приведенную эквивалентную скорость звука в упругой оболочке, e j H модуль упругости материала оболочки толщшга h, коэффициент объемного сжатия жидкости к. Оболочку считать работающей на растяжение — сжатие в окружном направлении. Изменением виутреипс энергии жидкости пренебречь.  [c.317]

Более точные границы можно получить при помощи теоремы Хилла об упрочнении [85]. Она утверждает, что для любого неоднородного упругого тела, ограниченного фиксированной поверхностью, энергия деформаций возрастает, если материал ка-ким-либо способом упрочняется . При этом Хилл предполагал, что после упрочнения при тех же локальных деформациях плотность энергии в каждом измененном элементе материала будет выше, чем до упрочнения. Применяя эту теорему, Хилл показал, что уточненные верхняя и нижняя границы для модуля объемного сжатия даются формулой (18), в которой величину л надо приравнять сначала наибольшему, а затем наименьшему из модулей сдвига двух фаз. То, что эти границы оказались лучше, было проверено сравнением результатов с моделью концентрических сферических слоев.  [c.82]

Определяющие уравнения состояния при упруго-пластпческом. деформировании описывают функциональную связь процессов нагружения и деформирования с учетом влияния температуры для локального объема материала, т. е. связь составляющих тензоров напряжений ац, деформаций гц и температуры Т с учетом их изменения от начального to до заданного t момента времени F[Oij(t), sij(t), T(t)]=0. Конкретные формы такой связи, представленные в литературе, основаны на упрощающих допущениях, применение которых экспериментально обосновано для ограниченного диапазона режимов нагружения. Учитывая кратковременность процессов импульсного нагружения, в большинстве случаев процессами теплопередачи можно пренебречь и с достаточной для практических целей точностью принять процесс адиабатическим. Изменение температуры материала в процессе нагружения в этом случае определяется адиабатическим объемным сжатием (изменением объема в зависимости от давления), переходом механической энергии в тепловую в необратимом процессе пластического деформирования и повышением энтропии на фронте интенсивных ударных волн (специфический процесс перехода в тепло части механической энергии при прохождении по материалу волны с крутым передним фронтом, в результате которого кривая ударного сжатия не совпадает с адиабатой [9, И, 163]).  [c.10]


Сжимаемость жидкостей и ее практическое использование. Капельные жидкости являются упругим телом, подчиняющимся при давлениях приблизительно до 600 кГ1см с некоторым приближением закону Гука. Упругая деформация (сжимаемость) жидкости — явление для гидравлических систем отрицательное. Ввиду практической необратимости энергии, расходуемой на сжатие жидкости, к. п. д. приводов в результате сжатия понижается. Это обусловлено тем, что аккумулированная жидкостью при высоком давлении энергия при расширении жидкости обычно не может быть использована для совершения полезной работы, а теряется, что приводит к понижению к. п. д. гидросистемы и к ухудшению прочих ее характеристик. В частности, сжимаемость жидкости понижает жесткость гидравлической системы и может вызвать нарушение ее устойчивости против автоколебаний вследствие сжатия жидкости в камерах насосов высокого давления понижается их объемный к. п. д. Сжимаемость жидкости ухудшает динамические характеристики гидравлических следящих систем, создавая фазовое запаздывание между входом и выходом. Сжимаемость жидкости в гидравлических системах управления создает в магистралях и механизмах эффект гидравлической пружины.  [c.26]

Очевидно, что модуль объемной упругости - К является обратной величиной коэффициента объемного сжатия. Для воды при нормальных условиях модуль объемной упругости равен 2000 МПа при повьшиенин давления воды до 10 МПа ее гшотность повысится всего на 0,5% (плотность рабочих жидкостей гидравлических систем - НС более чем на 1%). Поэтому в большинстве случаев капельные жидкости можно считать несжимаемыми, т е. считать плотность постоянной величиной. Однако при очень высоких давлениях и нсустаноинвшихся движениях жидкости ее сжимаемость необходимо учитывать. Так, если бы вода в Мировом океане (средняя глубина 3704 м) была несжимаемой, ес уровень повысился бы на 27 метров. Класс кремнийорганических жидкостей (силиконы) расширяет диапазон значений модуля объемной упругости до 800 МПа, что позволяет создавав на их базе системы, позволяющие накапливать энергию в три раза больше, чем с помощью стальных пружин  [c.12]

Так как потенциальную энергию упругого тела можно представить в виде суммы потенциальной энергии всестороннего сжатия и -отенциальной энергии чистого сдвига, то неравенство (9.23) будет справедливо для объемной и девиаторной частей тензора модулей упругости  [c.176]

Жидкости, как известно, практически несжимаемы, но в последнее время привлекает внимание способность к некоторому сжатию силиконовых жидкостей. Оказалось, что с их помощью можно накопить в 3 раза больше энергии на единицу объема, чем это позволяет сделать сталь. Правда, оптимальный диапазон давлений этих жидкостей составляет 1500—3000 бар. При меньших давлениях увеличиваются габариты упругого элемента, а при больших возникают конструктивные трудности и снил ается объемная сжимаемость. Пока их применяют для рессор, подвесок самоходных машин ИТ. п.  [c.113]

И деформации формоизменения, который подчеркивался в самом начале настоящей книги. Многие эксперименты показали, что при высоком гидростатическом давлении тело может накапливать большое количество упругой энергии без разрушения или остаточной деформации при условии, что материал совершенно однороден. Поэтохму Губер рассматривал отдельно всестороннюю деформацию и деформацию формоизменения. Он предполагал, что имеются две различные меры прочности для случаев простого растяжения и сжатия соответственно. Пусть Wo есть работа деформации в единице объема при всесторонней (объемной) деформации, а Шо — работа формоизменения. Губер принял, что в случае сжатия мерой прочности на разрушение является максимум величины г о, а в случае растяжения максимум величины -f- w oy Генки интересовался мерой сопротивления пластическому течению. Он утверждал, что поскольку не может быть всестороннего течения, следовательно не может быть и всестороннего пластического течения ни при сжатии, ни при растяжении. Поэтому условие пластического течения должно выражаться только через деформацию формоизменения. Как уже упоминалось раньше, он соответственно моделировал единичный объем любого пластического материала сосудом, способным вмещать в себя ограниченное количество энергии формоизменения. Когда энергии вливается больше, сосуд переполняется, или материал течет.  [c.120]

Сравнению е ползучестью 2) различная интенсивность старения и др. структурных процессов в условиях Р. (при падающем напряжении) и при ползучести (при практически постоянном среднем напряжении). Скорость Р. характеризуется временем Р., за к-рое релаксирующая величина уменьшается в е(а 2,7) раз. В теле может происходить одновременно несколько процессов Р. физяч. и физико-химич. св-в (в зависимости от состава, структуры, темн-рных, магнитных и электрич. полей и т. д.). Напр., в неравномерно упруго-деформированном теле Р. может происходить также путем уменьшения неравномерности гемп-ры (к-рая возникает при охлаждении растянутых и пагрева сжатых зон), путем диффузии более крупных атомов в растянутые, а более мелких — в сжатые зоны и от др. причин. Совокупность времен релаксации (или их обратных значений) образует релаксационный спектр данного материала. Процесс Р. в поликристаллах и вообще в материалах с зернистой структурой б. ч. проходит активнее по поверхностям раздела (зерен, блоков мозаичной структуры, поверхностям сдвигов и т. д.). Поэтому, так же как и для диффузии, различают пограничную и объемную Р. Т. к. правильность строения обычно убывает от середины к краю зерен, то степень неупорядоченности приграничных зон б. ч. выше, а энергия активации — соответственно меньше, чем внутренних зон. Вблизи границ зерен и происходит пограничное вязкое течение, вызывающее Р. напряжений. С повышением темп-ры испытания растет скорость диффузии и падает коэфф. вязкости, что сильно увеличивает скорость Р. (снижает сопротивление Р.). Если для обнаружения Р. при 20° у стали требуются испытания продолжительностью в тысячи часов, то при высоких темп-рах Р. проявляется уже за минуты и быстрее. Если считать тело до нагружения находящимся в равновесии, то с ростом приложенного напряжения неравновесность папряженного образца увеличивается и скорость Р. растет. Чем выше темп-ра испытания, тем сильнее возрастает скорость Р. с увеличением исходного напряжения. Как правило, с ростом времени скорость релаксации постепенно уменьшается, что соответствует подобному же уменьшению скорости при переходе от неустановившейся к установившейся (или от I ко II периоду) ползучести. Что касается III (ускоренного) периода, к-рый наблюдается при ползучести вследствие развития трещин и повышения локальных напряжений, то в условиях Р. при снижающихся средних напряжениях обычно скорость процесса постепенно уменьшается. Однако в нек-рых случаях, нанр. при интенсивных фазовых превращениях, когда выделяются крупные сферо-идизированные частицы о-фазы при 650— 700°, у пек-рых аустенитных сталей с резкой структурной нестабильностью после значительного времени скорость Р. может возрастать, приводя к т. н. III периоду Р. Т. о., Ill (ускоренный) период Р. яв-  [c.137]


Первым шагом на пути к построению реалистической модели Земли является модель сферы, выполненная локально-изотропным твердым веществом, у которого параметры 1хир зависят только от радиуса. Годографы- волн Р и 8 дают информацию о глу ких частях Земли, а длиннопериогдные-поверхностные волны лозволяют определить мощность коры и скорость волн в верхней мантии. Прогресс в методах измерения, достигнутый в последние 15 лет, обеспечил измерение основных мод собственных колебаний Земли, вызванных мощными землетрясениями, частоты которых определяются изучаемой упругой моделью. Вторым шагом к реалистической модели Земли является введение поглощения лри рассмотрении упругих констант как комплексных величин. Определение соответствующих параметров по затуханию волн Р и 5 связано со многими ограничениями, поскольку на амплитуду объемных волн сильно влияют рассеивание и локальные условия вблизи каждого сейсмографа. Затухание поверхностных волн более доступно прямому измерению, особенно тех волн, которые несколько раз обогнули земной шар. Ослабление ревербераций, следующих за большим землетрясением при надлежаш ей фильтраций, можно рассматривать как затухание отдельных резонаторов. Перечислен-яые источники информации позволили вывести зависимость параметров поглощения от радиального расстояния. Поскольку наличие поглощения обусловливает дисперсию скорости, следующий шаг состоит в изучении частотной зависимости упругих констант. Хотя радиальная модель Земли в общем и соответствует имеющимся наблюдениям, веш ество Земли лаТврально неоднородно, сама Земля не является сферой и вращение Земли имеет ряд резонансных пиков. В предположении, что модуль всестороннего сжатия чисто упругий (это означает отсутствие потерь энергии при сжатии). Qp=(4 3) (i /a) Qs, этого достаточно для определения величины 3 как функции радиуса. В грубом приближении равно 200 для верхней мантии, затем уменьшается до 100 на глубинах 100—200 км и затем медленно возрастает до 500 и более,  [c.133]

В настоящем исследовании диапазон скоростей статических деформаций был расширен путем проведения испытаний пород на ползучесть в специальной установке УИМКДН, по конструкции отличающейся от установки УИМК только передачей продольного усилия от штока, связанного с поршнем силового цилиндра, к образцу через пружинный аккумулятор деформаций, состоящий из набора тарельчатых пружин. Это позволяет проводить изучение объемных деформаций пород при постоянной нагрузке, обеспечиваемой аккумулированной упругой энергией пружин, и разных величинах всестороннего сжатия Оон, поровых давлений насыщающей жидкости рп и температур t (пределы изменений Стон до 2500 кгс/см Рп — до 1000 кгс/см t — до 400°С).  [c.55]


Смотреть страницы где упоминается термин Энергия упругого объемного сжатия : [c.44]    [c.64]    [c.57]    [c.43]    [c.315]    [c.124]    [c.56]    [c.312]    [c.82]   
Основы теории пластичности Издание 2 (1968) -- [ c.56 ]



ПОИСК



58—61 — Сжатие объемное

Объемная упругая энергия

Сжатие упругих тел

Упругая энергия

Упругость объемная

Энергия упругости



© 2025 Mash-xxl.info Реклама на сайте