Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции сварные — Упрочнение

Среднеуглеродистые мартенситно-бейнитные стали применяют в конструкциях в термически упрочненном состоянии. В этом случае необходимо получить искомый комплекс свойств без термообработки сварных соединений.  [c.304]

Конструкции сварные — Упрочнение 20 — 22  [c.532]

При отпуске ниже 600—650°С прочность, естественно, будет выше, но более низкий отпуск не обеспечит высокой пластичности, и это упрочнение не сохранится в сварной конструкции.  [c.401]


На рис. 406 приведен пример последовательного упрочнения сварного соединения проушины с трубой. Конструкция 3 нерациональна. Вылет проушины чрезмерно велик соединение работает на изгиб. Протяженность сварного шва недостаточна в его крайних верхних точках при изгибе  [c.559]

Растворенный водород также оказывается нежелательным, так как он резко уменьшает пластичность металлов (стали, медные и алюминиевые сплавы), вызывает пористость в сварных швах и в зоне термического влияния. Так называемая водородная хрупкость металлов- в настоящее время стала важной технической и научной проблемой, так как применение упрочненных сталей, обладающих малым запасом пластичности б, вызывает замедленное разрушение сварных конструкций.  [c.347]

Как было показано в предыду щем разделе, для оценки несущей способности механически неоднородных сварных соединений оболочковых конструкций достаточно знать величины коэффициента контактного упрочнения мягких прослоек в условиях их двухосного нагружения и параметра 3 , характеризующего несущую способность оболочек давления по моменту потери их пластической устойчивости.  [c.111]

Наибольший интерес с точки зрения влияния на прочность сварных соединений представляют наклонные и шевронные прослойки (ем. рис. 2.7,г,д). При определении коэффициентов контактного упрочнения таких прослоек необходимо учитывать конструктивные особенности рассматриваемых сооружений и конструкций. Если при нагружении  [c.136]

Высокая эффективность способа как средства повышения усталостной прочности деталей. Срок службы многих деталей, работающих при ударном и переменном нагружении, которые лимитируют работу машин, вследствие поверхностного упрочнения увеличивается в несколько раз сокращается потребность в запасных частях, резко снижается выход машин из строя вследствие усталостного разрушения деталей. При равной или даже несколько повышенной долговечности, после упрочнения можно повысить допустимые нагрузки, в первую очередь, для деталей, имеющих концентраторы напряжений (канавки, галтели, отверстия). Применение этого способа упрочнения расширяет возможности конструкторов в использовании более технологичных и конструктивных решений (например, галтелей малого радиуса вместо переменного или большого радиуса), в выборе материалов для деталей, сварных конструкций и гальванических покрытий, повышающих износостойкость и т. д. К таким покрытиям относится, например, хромирование, которое без поверхностного наклепа снижает усталостную прочность. Наряду с усталостной прочностью во многих случаях повышается износостойкость деталей и стабилизируются по своей прочности неподвижные посадки.  [c.94]


Положительные результаты получены при обработке сварных соединений последующей прокаткой их роликом под давлением (метод МВТУ). Этим путем достигается оформление сварных соединений, равнопрочных основному металлу, при сварке главным образом листовых конструкций со стенками толщиной до 5 мм из алюминиевых сплавов и некоторых сталей. Упрочнение достигается в результате наклепа, сдвиговых деформаций, сопровождающих процесс прокатки. На рис. 10 изображена установка для прокатки.  [c.132]

При сварке термически упрочненных сталей на участках рекристаллизации и старения может произойти отпуск металла с образованием структуры сорбита отпуска и понижением прочностных свойств металла. Технология изготовления сварных конструкций из низколегированных сталей должна предусматривать минимальную возможность появления в зоне термического влияния закалочных структур, способных привести к холодным трещинам, особенно при сварке металла больших толщин. При сварке термически упрочненных сталей следует принимать меры, предупреждающие разупрочнение стали на участке отпуска.  [c.263]

Особое место в изучении явлений усталости занимают сварные соединения из высокопрочных сталей. Влияние сварочного процесса на изменение свойств основного материала в этом случае может быть особенно сильным. Опасность образования сварочных трещин также увеличивается для высокопрочных сталей. Во многих случаях применение высокопрочных сталей взамен мягкой стали не является рациональным. Между тем стремление облегчить конструкцию или увеличить ее несущую способность заставляет искать способы, обеспечивающие достаточно высокую усталостную прочность для конструкций из высокопрочных сталей. Ряд таких средств изыскан и успешно применяется в практике (предварительный и сопутствующий подогрев, рациональный выбор электродов, строгое регламентирование удельных тепло-затрат, упрочнение сварных соединений пластическим деформированием и тепловыми обработками и др.).  [c.4]

Поверхностное упрочнение пластическим деформированием исследовали на сварных соединениях и элементах конструкций самого разнообразного вида с различными типами швов и из различных материалов в зависимости от степени концентрации напряжений, остаточной напряженности, вида и характеристики переменных напряжений, а также температурных условий.  [c.237]

Это позволило уверенно использовать поверхностный наклеп для упрочнения натурных сварных конструкций.  [c.247]

Создается своего рода противоречие. С одной стороны, известно, что для достижения высокой жаропрочности требуются стали или сплавы с карбидным или интерметаллидным упрочнением, превосходящие по этому показателю стали или сплавы, представляющие собой нестареющий у-твердый раствор. С другой стороны, именно они, стареющие стали и сплавы, наиболее подвержены локальным разрушениям (см. табл. 33). Все средства, направленные на предотвращение околошовных трещин, хоре нив борьбе с локальным разрушением. Довольно эффективным средством, в частности, является и использование мелкозернистых материалов. Однако радикального решения все эти средства не дают. Выходит, что для избавления лт локальных разрушений приходится отказаться от использования в сварных конструкциях, работающих длительное время при высоких температурах, аустенитных сталей и сплавов с карбидным или интерметаллидным упрочнением. Конечно, такой путь не может быть признан приемлемым.  [c.188]

Для повышения прочности сварных соединений в узлах и конструкциях, которые не могут подвергаться термической обработке после сварки, рекомендуется применять усиливающие накладки, приваренные к основному материалу точечной сваркой. Такой же метод конструктивного упрочнения сварного соединения можно применять и при роликовой сварке.  [c.255]


Термическая обработка сварных соединений. Упрочнение титановых сплавов с помощью термообработки достигается в отличие от сплавов на основе железа преимущественно за счет явлений старенпя. В конструкциях титановые сплавы могут использоваться в состоянии прокатки или отжига или в состоянии после упрочняющей термообработки. К термически стабильным сплавам первого типа, к которым упрочняющая термообработка не применяется, относится технический титан и его а- и а - - Р-сплавы мартенситного класса.  [c.354]

Ряд ответственных конструкций из термически упрочненных среднеуглеродистых мартенситно-бейнитных сталей сваривают проволокой Св-08Х20Н9Г7Т в углекислом газе как в автоматическом, так и полуавтоматическом режиме. При прочности металла щва 600 МПа достигают конструктивную равноценность сварных соединений основному металлу при высокой их надежности.  [c.221]

Установленные закономерности механического поведения неоднородных соединений оболочковых конструкций и предложенные на их основе расчетные методики оценки их несущей способности были получены исходя из предположения, что ослабленный участок соединений (мягкая гтрослойка) окружен твердым металлом с одинаковыми прочностными свойствами, однако на практике, особенно в сварных соединениях конструкций, выполненных из нагартованных термически упрочненных сталей и разнородных материалов, как было показано в разделе 2.1, имеет место несимметричная механическая неоднородность, которую условно можно отнести к схеме, приведенной на рис. 2.6,6 (пози-  [c.164]

Х13Н4Г9, выпускаемую в виде холоднокатаной ленты, применяют при изготовлении легких высокопрочных конструкций, соединяемых точечной или роликовой электросваркой. Ввиду высокого содержания углерода другие методы сварки для этой стали неприменимы из-за возможности появления в сварных соединениях склонности к межкристаллитной коррозии, В состоянии после закалки сталь 2Х13Н4Г9 имеет аустенитную структуру, переходящую при холодной пластической деформации в мартенсит (-у-> aj). Это имеет большое значение, так как упрочнение достигается как путем наклепа, так и благодаря частичному мартенсит-ному превращению. В результате сталь в холоднокатаном состоянии сочетает высокую прочность с достаточно высокой пластичностью [31 ]. Изменение свойств некоторых нержавеющих хромомарганцовоникелевых сталей в зависимости от различных факторов показано на рис. 25—28 [28 и др.[.  [c.36]

Большой комплекс исследований выполнен проф., докт. техн. наук М. Н. Гапченко по изучению влияния технологических факторов (неоднородности металла, технологических напряжений и дефектов) на свойства сварных соединений. В результате исследований установлены закономерности влияния этих факторов и предложены рекомендации по повышению несущей способности сварных соединений и конструкций, снижению чувствительности сварных конструкций к хрупкому разрушению. Показана возможность регулирования в больших пределах агрегатной прочности и энергоемкости сварных соединений из высокопрочных материалов путем изменения объема мягкой прослойки. Показано, что термическое упрочнение является эффективным средством снижения чувствительности металла шва к концентраторам напряжений. Изучено влияние скорости приложения нагрузки на проч-  [c.24]

Стали для работы при высоких температурах и давлениях, основы их легирования и механизмы упрочнения / Ланская К. А., Корешкова А. М.— В кн. Многослойные сварные конструкции и трубы Материалы I Всесоюз. конф. Киев Наук, думка, 1984, с. 91—96.  [c.379]

Сварная конструкция, изготовленная из горячекатаной стали ВСтЗ, с пределом текучести Оо,з = 280 МПа при эксплуатации в условиях Севера (при температурах от —40 до —50 С), разрушилась хрупко. Объясните причину брака и порекомендуйте сталь и метод ее упрочнения, обеспечивающие высокую устойчивость к хрупкому разрушениЕО в условиях Севера и снижение массы конструкции (Оо,2 = 350- 400 МПа).  [c.348]

Из низколегированных сталей с кар-бонитридным упрочнением изготовляют металлоконструкции промышленных зданий, ответственные сварные конструкции, в том числе северного исполнения, пролетные строения железнодорожных и крупных автодорожных мостов, платформы автомобилей большой грузоподъемности (до 120 т) и др.  [c.13]

КМ, армированные нитевидными кристаллами, по своим свойствам находятся между композитами, упрочненными длинными волокнами и порошком. МКМ позволяют получать герметичные и высокопрочные сварные соединения при различных комбинациях сплавов, экоьюмить дефицитные и дорогостоящие металлы, существенно упрощать конструкции ответственных узлов, повышать надежность и долговечность работы изделий. Эти материалы обладают комплексом совершенно новых (по сравнению с металлами и сплавами) характеристик. Использование  [c.547]

Данный жаропрочный аустенитный сплав может быть использован во всех трех группах сварных конструкций. Если речь идет о ракетном двигателе, то здесь от сварщика требуется прежде всего обеспечить равнопрочность сварного соединения при максимальной сопротивляемости металла шва ползучести. Срок службы ракетного двигателя настолько мал, что вопросы длительной ока-линостойкости или стойкости сварного соединения против локальных разрушений в околошовной зоне не очень важны. Главное — жаропрочность шва, т. е. гарантия того, что он не будет деформироваться под действием огромных нагрузок и температур. Иное дело, авиационный двигатель. Здесь уже нужно думать об окалино-стойкости металла шва, о стойкости околошовной зоны против локальных разрушений. Конструктивные формы изделия такие, что, в ряде случаев, позволяют добиться равнопрочности сварного соединения при более низкой жаропрочности металла шва по сравнению с основным металлом. И, наконец, при сварке корпуса турбины или паропровода, прежде всего нужно заботиться о долговечности сварного соединения, учитывая процессы, могущие развиваться на протяжении многих десятков тысяч часов, например дисперсионное упрочнение металла шва, вызывающее снижение его пластических свойств и т. д. Первостепенной задачей здесь является предотвращение локальных разрушений в околошовной зоне. В случае кратковременной службы металл шва может не отличаться по своей композиции от основного металла, а вопросы упрочняющей или иной термической обработки в данном случае становятся второстепенными. В случае же длительной работы  [c.54]


Автору с сотрудниками удалось найти другое решение, позволяющее применять в сварных конструкциях высокожаропрочные стали, не опасаясь локальных разрушений [20]. Оказалось, что благоприятное сочетание высокой жаропрочности и высокой сопротивляемости локальным разрушениям достигается при упрочнении аустенитной стали (сплава) значительным количеством бо-ридной фазы. Аустенитные стали, легированные бором (более 0,3—0,4%), обладают не только высокой жаропрочностью (см. табл. 3). Они весьма устойчивы против образования горячих околошовных трещин (см. рис. 76). Обладая двухфазной структурой, они отличаются повышенной межкристаллитной (межзерен-ной) прочностью. Следует, однако, отметить, что ударная вязкость этих сталей при комнатной температуре невысока. Автор полагает, что применение жаропрочных аустенитно-боридных сталей явится одним из эффективных средств решения проблемы предотвращения локальных разрушений сварных соединений (рис. 76). Эффективной мерой предотвращения хрупких разрушений аустенитных сталей является повышение их длительной пластичности [23 j.  [c.188]

Применение высокопрочных сталей сдерживается [1] их повышенной склонностью к коррозионному разрушению под напряжением (КРН). Наиболее перспективны в этом отношении мартенситно-ста-реющие стали (МСС). Благодаря специфическому механизму упрочнения [2-5], технология изготовления самых разнообразных изделий из этих сталей отличается относительно простотой и надежностью. МСС находят все большее применение в различных конструкциях, в инструментальной промышленности [6], для изготовления деталей крепежа, шасси самолетов и вертолетов [7, 8], деталей посадочных устройств, зубчатых передач, газовых двигателей, сварных корпусных двигателей, различных деталей узлов космических кораблей [4]. За последние десятилетия накоплена обширная информация, касающаяся как основного классического варианта МСС (высоконикелевые стали, легированные молибденом и кобальтом), так и экономнолегированных [5] сталей с минимальным содержанием дорогих и дефицитных элементов.  [c.160]

Для сталей, сохраняющих при охлаждении стабильность аустенита до 20 и способных к его распаду при пластич. деформации, а также к дальнейшему упрочнению старением (стали, граничащие со сталями переходного класса), возможно достижение прочности С. с. путем механич. наклепа при больших степенях деформа-ЦШ1 (до 90%) и последующего старения. Возможно также достижение свойственной С. с. прочности путем пластич. деформации аустенитных сталей и сталей переходного класса при низких темп-рах (—70° и ниже). Необходимость при всех этих технологич. приемах пластич. деформации в размерах, к-рые резко изменяют форму и размеры изделий, и практич. невозможность проведения после упрочнения операций формования, гибки п т. п., а также крайняя затруднительность сварки в связп со значительным (более чем в 2 раза) разупрочнением сварного шва, крайне ограничивают применение С.с. как конструкц. материала. Широкое использование С. с. также затрудняется ее чувствительностью к концентрации напряжений, резко снижающих конструктивную прочность, и трудностями механич. обработки, к-рая для С. с. может осуществляться только спец. методами (панр., электроэрозионное и электроимпульсное шлифование) при последнем методе требуется соблюдение крайней осторожности во избежание прижогов. На рис. 5 показана хрупкая прочность стали ВЛ1 после закалки и термомеханич. обработки. В основном возможно изготовление только таких  [c.243]

Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]


Смотреть страницы где упоминается термин Конструкции сварные — Упрочнение : [c.257]    [c.177]    [c.85]    [c.87]    [c.132]    [c.154]    [c.192]    [c.129]    [c.264]    [c.265]    [c.175]    [c.216]    [c.217]    [c.166]    [c.286]    [c.129]    [c.32]    [c.304]    [c.240]    [c.259]   
Основы конструирования Книга2 Изд3 (1988) -- [ c.20 , c.22 ]



ПОИСК



Методы упрочнения сварных конструкций

Сварные конструкции

Упрочнение

Упрочнение конструкций



© 2025 Mash-xxl.info Реклама на сайте