Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Использование нестационарных уравнений для решения стационарных задач

Испарение и конденсация 455, 458 Использование нестационарных уравнений для решения стационарных задач 31, 161—168 Источник массы 487  [c.603]

В более общем случае стационарной задачи, когда ду М) 0 при MeV, в правую часть матричного уравнения (4.3,60) войдет дополнительно слагаемое в виде вектора тепловых нагрузок, компоненты которого выражаются через интегралы по объему тела. Для нелинейной стационарной задачи МГЭ может быть ис-по.тп.зован в сочетании с процедурой последовательных приближений [12, 28]. В случае применения МГЭ к решению нестационарной задачи теплопроводности требуется либо использование интегрального преобразования Лапласа, либо введение функций источника, либо предварительный переход к конечным разностям по времени [12, 28].  [c.210]


Разработка разностных схем для дифференциальных уравнений,, описывающих стационарные процессы, также приводит к необходимости решения системы разностных уравнений. Однако иногда оказывается целесообразным использование специального приема, позволяющего избежать трудностей, связанных с их решением. С этой целью исходное стационарное дифференциальное уравнение заменяют на нестационарное с тем же пространственным оператором, а решение исходной задачи ищут как предел, к которому стремится решение нестационарной задачи при т->оо. Граничные условия для нестационарной задачи сохраняют такими же, как для стационарной, а начальные условия выбирают произвольно. Для нестационарного уравнения составляют явную разностную схему, решение которой принципиальных трудностей не вызывает. Рассмотренный способ называют методом установления.  [c.66]

Для стационарной задачи изложенный метод приводит к системе, состоящей из М алгебраических уравнений, для нестационарной задачи — к системе обыкновенных дифференциальных уравнений относительно неизвестных значений искомой функции в узлах сетки Фр(т). Интегрирование по времени этих уравнений проводится маршевым методом с использованием явных или неявных схем (см. п. 5.1.12). При этом на каждом новом временном слое задача также сводится к решению системы, состоящей из Л/алгебраических уравнений.  [c.152]

Для внешних сопряженных задач, как стационарных, так и нестационарных, были получены асимптотические решения при обтекании пластины сверхзвуковым газовым потоком (отметим, что рассматриваемые внешние задачи не могут быть решены точно, так как уравнения пограничного слоя в области передней кромки обтекаемого тела несправедливы, поэтому все решения, полученные с использованием теории пограничного слоя, являются асимптотическими).  [c.295]

Аналитические методы [1] для подобного класса течений не дали удовлетворительного объяснения многих деталей взаимодействия потоков в кавернах. В [2] исследованы решения двумерных уравнений Эйлера для анализа обтекания каверны потоком с большой дозвуковой скоростью. Решение двумерных уравнений Навье-Стокса [3] было впоследствии повторено в ряде численных исследований, например в [4], для турбулентного режима течения в каверне с Lp = UD = 6.2, М = 2.36, где L - длина выемки, D - глубина. Задача обтекания плоской прямоугольной выемки неравновесным потоком вязкого многокомпонентного реагирующего газа решена в [5]. Численные результаты для нестационарных вязких течений в прямоугольных кавернах при сверхзвуковом внешнем обтекании получены в [6]. Метод решения уравнений Навье-Стокса для сжимаемого стационарного течения [3] был также применен для исследования вязкого турбулентного трехмерного течения, например в [7], однако этот метод не нашел широкого применения для нестационарного течения. Для исследования обтекания каверны с = 5.3, 8.0 и 10.7 гиперзвуковым потоком (М = 6.3) при ламинарном и переходном режимах пограничного слоя в [8] использован метод [7].  [c.123]


Метод установления. В большинстве работ, посвященных численному решению прямой задачи теории сопла, используется метод установления (стабилизации), идея которого состоит в использовании для решения стационарной задачи нестационарных уравнений газовой дипамики [152]. Для нестационарных уравнений решается краевая задача с граничными условиями, соответствующими граничным условиям стационарной задачи, не зависящим от временной координаты. Искомое стационарное решение получается как предел, к которому стремится нестационарный процесс с ростом Такой прием, повышающий на единицу размерность уравнений, тем пе менее для многих задач оправдай. К таким задачам относятся, например, задачи о течении газа в соплах и струях, задачи обтекания тел газом, когда движение газа описывается уравнениями смешанного эллиптико-гиперболического типа. Введением временной координаты задача сводится к решению гиперболических уравнений.  [c.103]

Возможный способ решения смешанных задач состоит в рассмотрении их как нестационарных и использовании процесса установления по времени. В основе такого приема лежит физический факт, что стационарное течение на достаточно большом отрезке времени при неизменных внешних условиях является пределом нестационарного течения. Численные эксперименты подтверждают, что стационарное решение задач газовой динамики может быть найдено как предел при 1- о° нестационарного-решения при стационарных (не зависяш их от времени) граничных условиях. С этой целью в стационарные уравнения вводится новая независимая переменная — время, в результате чего сложные эллиптико-гиперболические краевые задачи заменяются на смешанные задачи для гиперболической системы уравнений нестационарной газовой динамики, для которых разработаны эффективные численные методы решения. Начальные условия могут быть заданы довольно свободно, так как в процессе установления решения по времени их влияние ослабевает и процессом управляют стационарные граничные условия.  [c.268]

Решение полной нестационарной задачи для произвольной решетки в принципе возможно теми же методами, которые применялись для решетки пластин, а именно вихревым, потенциала ускорений и интерференции, причем вычисления усложняются необходимостью интегрировать по контуру профиля С, а не по отрезку прямой. При изучении этой задачи было установлено наличие эффекта конечного смещения профилей (помимо скорости этого смещения). Эффект конечного смещения впервые был оценен на примере решетки пластин, колеблющихся со сдвигом фаз при стационарном обтекании с немалым углом атаки (В. В. Мусатов, 1963). В квазистационарной постановке или при использовании модели с разрезами за профилями этот эффект находится как влияние малой деформации профиля в стационарном неоднородном потоке в полной нестационарной постановке происходит соответствующее усложнение интегральных уравнений задачи (В. Э. Сарен, 1966). В. Б. Курзин в 1967 г. наметил новый подход к решению этой задачи с помощью метода склеивания , согласно которому вся область течения через решетку делится на три подобласти набегающего потока, межлопаточного канала и потока за решеткой в каждой из подобластей решается соответствующая задача относительно потенциала скорости с учетом условий его непрерывности на границах между подобластями.  [c.140]

Существование решения представляет собой в некотором смысле меньшую проблему в том случае, когда расчеты ведутся по нестационарным уравнениям, а этот подход оказался, вообще говоря, наиболее успешным при решении полных уравнений для течения вязкой жидкости. Будучи уверенными в справедливости нестационарных уравнений Навье — Стокса, мы склонны думать, что численное решение, полученное по физически реальным начальным условиям, имеет определенную ценность. Если же стационарного решения не существует, то, проводя нестационарные конечно-разностные расчеты, мы можем убедиться в этом. Может случиться, однако, что непрерывное течение, которое неустойчиво по отношению к малым возмущениям, будет оставаться устойчивым при численном моделировании. Это может иметь место как при крупномасштабной неустойчивости (такой, как отрыв вихрей), так и нри мелкомасштабной турбулентности в сдвиговом слое. Кроме того, внесение в нолные уравнения Навье — Стокса приближенных допущений (например, линеаризации Буссинеска) лишает уверенности в существовании решения. Это особенно относится к тем случаям, когда приходится работать с непроверенными уравнениями состояния. Годунов и Семендяев [1962] показали, что при использовании определенного класса уравнений состояния численное решение газодинамических задач может быть неединственным.  [c.25]


Во всех вышеупомянутых работах было показано, что при заданных заранее переменных условиях на поверхности тела (близких к реальным) использование закона Ньютона, а следовательно, и коэффициента теплообмена неприемлемо. Однако закон зависимости температуры стенки от координат и от времени не может быть задан apriori , а должен быть получен путем совместного решения уравнений распространения теплоты в жидкости и твердом теле вместе с уравнениями движения, причем на границе твердое тело — жидкость температуры и тепловые потоки равны, т. е. должна решаться так называемая сопряженная задача теплообмена [Л. 4-4, 4-5]. При такой постановке учитывается взаимное тепловое влияние тела и жидкости, которое при прежней постановке не учитывалось, в результате чего теплообмен оказывался не зависящим от свойств тела, его теплофизических характеристик, размеров, распределения источников в теле и т. д., что, очевидно, противоречит физическому смыслу. Особенно важно рассматривать задачи теплообмена как сопряженные для случая нестационарного теплообмена. Действительно, даже в предельном случае, когда коэффициент теплопроводности твердого тела очень большой (Xj->-oo), температуру поверхности нельзя считать постоянной, так как хотя она и не зависит от координат точек поверхности, но изменяется во времени. Однако в отличие от стационарного теплообмена даже н в этом предельном случае  [c.258]


Смотреть страницы где упоминается термин Использование нестационарных уравнений для решения стационарных задач : [c.85]    [c.197]   
Вычислительная гидродинамика (0) -- [ c.31 , c.161 , c.168 ]

Вычислительная гидродинамика (1980) -- [ c.31 , c.161 , c.168 ]



ПОИСК



Задача нестационарная

Задача стационарная

Использование нестационарных уравнений для решения стационарных

Нестационарность

Решение стационарное

Стационарные и нестационарные решения



© 2025 Mash-xxl.info Реклама на сайте