Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение границы раздела

На рис. 20 схематически показаны эти виды разрушения, причем видно, что линия разрушения может включать также участки расслаивания (разрушения границы раздела).  [c.127]

VII. Разрушение границы раздела............................... 256  [c.206]

VII- Разрушение границы раздела  [c.256]

Дробление компонента, содержащего трещину (образование параллельных трещин нормального разрыва от действия о1у (90°) на рис. 8), и сдвиговое разрушение границы раздела (от Тху (90°)) становятся все более вероятными, когда этот компонент делается относительно более жестким.  [c.414]


Композиты с дисперсными частицами в металлической матрице, разрушение границы раздела между частицами и матрицей 60, 68, 71—72  [c.478]

Теперь оценим вклад в общую вязкость разрушения волокнистых композиций процесса нарушения связи между матрицей и волокном. В композициях с ослабленной связью напряжение в вершине трещины вызывает разрушение связи прежде, чем разрушится волокно. Если связь нарушена на участке длиной у, то деформационная энергия, аккумулированная на этом участке волокна, рассеивается необратимо в виде теплоты при разрушении волокон. В связи с этим в первом приближении работу разрушения границы раздела можно приравнять деформационной энергии волокна длиной у. Деформационная энергия  [c.25]

Эти механизмы связаны с наличием в композиционных волокнистых материалах большого числа поверхностей раздела, которые могут стать тормозом на пути развития трещины. Можно в первом приближении отметить два явления, способствующих интенсивной диссипации энергии движения трещины — вытягивание волокон из матрицы и разрушение границы раздела между ними. Дополнительное сопротивление распространению трещин, развившихся в матрице, оказывают силы трения между вытягиваемым волокном и матрицей.  [c.14]

При отсутствии такого взаимодействия возникает непровар. Протекающий при осадке ток повышает температуру соединения и способствует разрушению границ раздела между деталями, а осадка дополнительно пластически деформирует и улучшает металл соединения. Соединение на участках с закристаллизовавшимся до осадки металлом формируется в зависимости от строения пленок и способности их разрушаться, растворяться или выдавливаться из зоны соединения.  [c.17]

Устойчивость сферических меж-фазных границ. Процесс разрушения капель и пузырьков чрезвычайно сложный и характеризуется взаимодействием сил поверхностного натяжения, вязкости и сил инерции. Условия для начала дробления можно получить, анализируя устойчивость жидкой сферы в потоке другой жидкости. Решение этой задачи даже в рамках малых возмущений очень сложно. Поэтому рассмотрим устойчивость первоначально плоской границы раздела двух идеальных жидкостей (т. е. эффекты вязкости отбрасываются) с плотностями р°, р2 и поверхностным натяжением S, движущихся с относительной скоростью V вдоль этой границы и с ускорением g в направлении. перпендикулярном к границе, причем g > О, если направлено от первой ко второй фазе.  [c.256]


Существует некий критический свободный объем, при котором фаница превращается в, две невзаимодействующие поверхности (это может быть двойной вакансионный слой или поры, щели и т.п.) [69]. Зависимость энергии фаниц от величины свободного объема имеет вид, представленный на рис. 64. Достижение на границах раздела структурных элементов критического значения свободного объема является чрезвычайно опасным, поскольку в этом случае формируются поры и трещины различных масштабов, приводящие впоследствии к разрушению материала.  [c.94]

Если конструкцию из металлического материала защитить от воздействия агрессивных сред, необходимо длительное время для того, чтобы такая ненагруженная конструкция самопроизвольно разрушилась. Время до разрушения может исчисляться сотнями лет. Создание же любой промышленной конструкции предполагает, что она должна будет нести определенную нагрузку опоры моста испытывают сжатие, трос подъемного крана - растяжение, вал двигателя - кручение. Таким образом, материал конструкций постоянно или периодически подвергается внешним воздействиям. При этом в материал происходит накачка энергии извне, и он вводится в неравновесное состояние. В его структуре начинают происходить постепенные перестройки. Они ведут к усилению границ раздела между отдельными структурными элементами, составляющими материал, и в конечном итоге - к появлению и развитию микротрещин.  [c.100]

Г. Лондон [85] впервые отметил, что малые образцы должны иметь большие критические поля, чем массивные. Позднее Лауэ [86] развил более полную теорию явления. Однако указанные авторы пользовались критерием перехода, существенно отличным от данного нами выше. Они предполагали, что разрушение сверхпроводимости происходит в результате постепенного движения границы между нормальной и сверхпроводящей фазами от поверхпости образца внутрь. При этом они пренебрегали шириной переходной зоны н поверхностным натяжением ). Критерий устойчивости границы раздела в этом случае может быть выражен через критическую плотность тока, которая не дoJ[жнa быть превышена.  [c.745]

Здесь использована естественная система координат, оси которой X и у направлены по касательной и по нормали к обтекаемой поверхности, и qis — соответственно массовая скорость образования компонентов и тепловой эффект -й независимой гетерогенной химической реакции Ns — число независимых гетерогенных реакций, — плотность диффузионного потока а-компонента, Ra — массовая скорость образования ос-компонента в результате гетерогенных химических реакций и сублимации, (ро)ш — массовая скорость термохимического разрушения тела, — толщина слоя теплозащитного материала, индексы ш и е приписывают параметрам на границе раздела сред и на внешней границе пограничного слоя, и, V— компоненты скорости.  [c.213]

Представленные выше результаты носят в основном качественный характер, так как при их получении использовались довольно обременительное допущение о заморожен-ности течения в вязком ударном слое (на самом деле оно химически неравновесное, но все же ближе к равновесному типу течения [19]) и спорные граничные условия для (ро)ш и Сгш- В результате этого задаваемые значения этих величин могут быть не согласованы со значениями тепловых потоков, которые получаются в результате решения задачи. Очевидно, что массовая скорость термохимического разрушения (ри)ш и Саш должны определяться из законов сохранения массы на границе раздела сред в результате решения соответствующей задачи тепло- и массообмена в сопряженной постановке.  [c.451]

Разновидность коррозионной эрозии — фреттинг-коррозия, т. е. разрушение на границе раздела двух соприкасающихся поверхностей, которые слабо колеблются относительно друг друга. Фреттинг-коррозия часто встречается в устройствах и машинах, где имеются вибрации, например в соединениях, полученных горячей посадкой и прессованием, болтовых и шпоночных соединениях, опорных поверхностях колец подшипников качения и др.  [c.20]


Прочность клеевого соединения определяется физико-механическими свойствами клеевого шва, характером его нагружения и другими факторами. Различают адгезионную и когезионную прочности склеивания. Первая обусловлена силами сцепления на границах раздела клея с соединяемыми элементами конструкции, вторая — силами сцепления между молекулами клея. Соответственно, разрушение шва по границе раздела клея с элементом конструкции называют адгезионным, разрушение по самому клею — когезионным. Описываемые ниже методы пригодны для оценки когезионной прочности, поэтому под прочностью склеивания понимается когезионная прочность.  [c.308]

При наличии в жидкости даже небольшой примеси поверхностно-активных веществ последние сосредоточиваются на границе раздела фаз, что обычно приводит к значительному увеличению длительности разрушения жидких пленок (аналогичное действие оказывают в ряде случаев и мелкодисперсные твердые частицы, взвешенные в жидкости).  [c.72]

В более ранних исследованиях [1—3] было показано, что плазменное покрытие оказывает на процессы деформирования и разрушения твердых тел двойственное влияние в одном интервале температур и напряжений оно упрочняет основной материал, в другом — разупрочняет. Аналогичное воздействие, но с противоположным эффектом на основной материал оказывает диффузионный слой, образованный при дополнительной пос.ле напыления термообработке. Такое воздействие покрытия на твердое тело обусловлено динамикой дислокаций у поверхности раздела. Взаимодействие дислокаций с границей раздела определяется свойствами а) напыленного покрытия, изобилующего порами, примесями, окислами, в котором при приложении напряжений могут преждевременно зарождаться трещины, приводящие к разрушению композиций б) контактной зоны, формирующейся непосредственно при напылении покрытий и представляющей собой тонкий слой на поверхности основы в) диффузионного слоя, образовавшегося при отжиге и представляющего собой твердый раствор напыляемого материала в основе.  [c.104]

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]

В другом варианте отделение покрытия от основного металла по границе раздела произойдет лишь на отдельных участках, т. е. будет наблюдаться смешанное разрушение по покрытию и по границе раздела (рис. 4.3, в).  [c.58]

Взаимосвязи геометрических размеров штифта и толщины покрытия с возникающими напряжениями и характером разрушения посвящены работы [16, 95, 96]. Диаметр штифта должен быть около 2 мм. При использовании штифтов иного диаметра наблюдаются либо поперечное разрушение (см. рис. 4.3, б) покрытия по периметру штифта, либо смешанный тип разрушения, когда часть покрытия отслаивается по границе раздела покрытие — штифт , а другая — по покрытию (см. рис. 4.3, в).  [c.59]

Снижение частоты приложения нагрузки даже при комнатной температуре и стандартной влажности 70-80 % сопровождается возрастанием длительности нахождения вершины трещины в раскрытом состоянии. Следствием этого является более продолжительное воздействие окружающей среды в вершине трещины, где выделяется большое количество тепла в результате формирования зоны пластической деформации. Тепловой процесс вызывает даже в обычной воздушной среде диссоциацию паров воды, что сопровождается выделением свободного водорода и кислорода. Оба газа проникают в материал, вызывая его охрупчивание и формируя окислы. В зависимости от сродства материала с выделяющимися в результате диссоциации паров воды газами могут быть сформированы многообразные продукты взаимодействия, а также разное количество газов может проникнуть внутрь самого материала и уже там образовать продукты взаимодействия или остаться в виде молекул, например, на границах раздела зерен, субзерен или фаз. Поэтому при воздействии окружающей среды на рост трещины может быть реализован процесс внутри-, межзеренного и смешанного по телу и по границам зерен разрушения.  [c.386]

Среди возможных видов разрушения различают разрыв матрицы, разрыв на границе раздела между волокном и матрицей и разрыв волокон. Эти виды разрушения не являются независимыми, а могут взаимодействовать и стимулировать друг друга. Начало разрушения, очевидно, определяется внутренним напряженным состоянием, которое зависит от действующей нагрузки, геометрического строения композита и свойств его компонентов. Может оказаться, что напряженное состояние является очень сложным, и определить его аналитически чрезвычайно трудно поэтому экспериментальные исследования играют существенную роль, а иногда просто необходимы. Экспериментальные методы, применяемые для изучения механики композитов, включают метод фотоупругости, тензометрический метод, метод муара и голографию. Метод фотоупругости применим к разнообразным задачам и особенно эффективен при изучении микро-механики.  [c.493]


Факторы, ояределяющие, будет ли трещина в матрице распространяться сквозь волокно или вдоль поверхности раздела, были обсуждены Аутуотером и др. [64—66]. Они рассмотрели отдельное длинное волокно, погруженное в блок матрицы, с нарушенной связью по поверхности раздела на расстоянии х от свободной поверхности. Напряжение, необходимое для продолжения процесса расслаивания, состоит из двух частей. Первая необходима для преодоления трения скольжения волокна на расстоянии X при его вытаскивании из оболочки матрицы после разрушения границы раздела, а вторая есть напряжение, необходимое для разрушения связи волокно — матрица  [c.463]

Поскольку большинство полимерных композиций с короткими волокнами, распределенными хаотически, являются изотропными, их прочность при растяжении и сжатии должна быть примерно одинаковой. Однако, если все волокна ориентированы в направлении сжатия, то разрушение при сжатии наступит при меньшем напряжении, чем при растяжении. В материалах с низкой адгезионной прочностью сцепления волокон с матрицей при сжатии возможно продольное проскальзывание волокон, тогда как при растяжении поперечные силы, возникающие вследствие эффекта Пуассона, увеличивают прочность сцепления волокон с матрицей. При сжатии композиций с высокой адгезионной прочностью может быть реализована значительная часть их прочности при растяжении, однако при сжатии большая часть прикладываемой нагрузки выдерживает матрица, а так как волокна не являются непрерывными, локальные сдвиговые разрушения в матрице способствуют разрушению волокон при продольном изгибе с разрушением границы раздела волокон с матрицей и потерей усиливающего эффекта волокон. Аналогичная ситуация в однонаправленных волокнистых композициях при сжатии проанализирована теоретически и рассмотрена позднее.  [c.99]

В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор Na l, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них.  [c.25]

Если мы можем каким-либо образом выдел1ггь из окружающего пространства часть материи, эта часть всегда имеет поверхность, благодаря которой вообще возможно произвести такое выделение. Так мы осознаем, что в окружающем мире существует множество различных тел и объектов. Но поверхность двумерна, а материя по ту и другую сторону поверхности трехмерна. Сложно себе вообразить какую-то резкую границу, на которой скачком происходит изменение мерности пространства. Скорее всего, вблизи поверхности раздела свойства трехмерного объема тела плавно изменяются и переходят в свойства двумерной поверхности. Каковы эти свойства и как происходит их изменение описано во второй части Главы 4 (разделы 4.3 - 4.4). Здесь приводится концепция поверхностного переходного слоя на границах раздела фаз, в пределах которого происходит постепенное изменение мерности от 3—>2. Показывается, что зарождение и рост трещин можно достаточно легко описать механизмом формирования дробно-размерного слоя. С этой позиции дается описание ме.ханиз-мов разрушения полнкристаллических сплавов.  [c.4]

Раскрытие плоскостного дефекта со стороны твердого металла достигает своего критического значения раньше, чем со стороны мягкого металла. В окрестности вершины дефекта реа 1изуются условия для старта трещины. Последняя должна отклониться от границы сплавления в направлении менее прочного металла М. Однако стартовавшая в твердом металле трещина останавливается на границе разделов металлов М и Т, поскольку в зоне предраз-рушения со стороны мягкого металла критические условия для старта трещины отсутствуют, <5 . Учитывая данное обстоятельство, можно предположить, что разрушение пойдет по граирще сплавления и не будет определятся утлом  [c.100]

За многие тысячелетия развития человеческого общества и технического прогресса накоплен некоторый опыт по предотвращению или снижению коррозии используемых изделий и устройств. В предшествующие столетия отсутствовало научно обоснованное истолкование коррозионных процессов, работоспособность и долговечность объекта защиты предопределялись правильностью выбора конструкционного материала или защитного покрыли на основе накопленного опыта. В наши дни происходит становление науки Химическое сопротивление материалов , предложены и экспериментально подтверждены механизмы коррозионных разрушений, разработаны и продолжают совершенствоваться активные методы электрохимической и ингибторной защиты, да и традиционные защитные покрытия рассматриваются уже не как инертные барьеры, изолирующие коррозионную среду от поверхности изделия, а как физически и электрохимически активные слои веществ, изменяющие механизм возможной коррозии на границе раздела фаз.  [c.3]

Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты.  [c.122]


Наиболее важным моментом пластичного разрушения путем слияния пор является их зарождение. Были предложены разные механизмы зарождения пор. Петч [391] предположил, например, что поры образуются в процессе пластической деформации по границам раздела матрица — фаза из-за различий пластических и упругих свойств частицы и матрицы. Эти несилошности затем растут за счет развития  [c.194]

ПО всей поверхности торца штифта [15]. Это приводит к более резкому падению нагрузки, наклон участка 4 увеличивается. Теоретическое обоснование штифтового метода затрудняется сложным напряженным состоянием покрытия при нагружении. Соотношение одновременно действующих напряжений среза и изгиба и величины прочности соединения покрытия обусловливает характер разрушения покрытия. Различаются четыре вида разрушения (рис. 4.3). Торец штифа (рис. 4.3, а) отделяется от покрытия строго по границе раздела. При таком чистом отрыве прочность соединения покрытия будет определяться только нормальным напряжением сгсоед которое нахо-  [c.58]

Медленное деформирование материала может приводить к росту трещины не только по плоскостям скольжения, но также и по границам фрагментов Б условиях интенсивного наклепа материала и к потере когезивной прочности в субграницах. Такой вид разрушения сосуда под давлением был зарегистрирован в условиях эксплуатации. Трещина распространялась в сплаве 17Х4НЛ по границе раздела двухфазовой структуры между прослойками феррита (ферритная полосчатость) и мартенситной матрицей, В условиях двухосного растяжения под давлением и длительной выдержки под нагрузкой происходило вязкое отслаивание феррита по приграничным зонам. Трехточечный изгиб образцов в виде пластин, вырезанных из гидроагрегата вдоль образующей его цилиндрической части, показал, что при скорости деформации 0,1 мм/мин образцы имеют высокую пластичность с остаточной деформацией около 8 % в зоне разрушения. Рельеф излома имел полное подобие рельефу эксплуатационного излома. Это означало, что в условиях эксплуатации вязкость разрушения была реализована полностью, хотя на мезоскопическом масштабном уровне (0,1-10 мкм) разрушение было квазихрупким. Пластическая деформация материала была реализована за счет деформации зерен феррита с формированием неглубоких ямок в момент отслаивания феррита по границам мартенситных игл, что привело к столь значительному утонению стенок ямок, что их можно было выявить только при увеличении около 10,000 крат при разрешении растрового электронного микроскопа около 10 нм.  [c.92]

Снижение амплитуды переменных нагрузок, сопровождающееся снижением СРТ ниже 5-10 м/цикл, может проявлять структурную чувствительность материала, что, очевидно, связано с малыми размерами зоны пластической деформации в вершине усталостной трещины. Выражается структурная чувствительность в зарождении и росте трещины по границам раздела щ- и (3 ,-фаз [87, 83]. Очаг разрушения при этом представляет фасетку излома с выраженной двухфазовой пластинчатой структурой материала, наблюдаемой обычно при исследовании материала в плоскости шлифа.  [c.362]

К этой задаче приводятся некоторые классы задач механики разрушения (нащшюр, задача о ветвлении трещин, задача о Т )ещине на границе раздела различных упругих сред ж т.д. .  [c.28]

Другая важная проблема микромеханики композитов — это изучение передачи нагрузки от матрицы к волокну (или от волокна к матрице) в том случае, когда внешняя сила действует параллельно волокнам или под углом к ним. Известно значительное число экспериментальных фотоупругих исследований, посвященных напряжениям в матрице, распределениям напряжений у границ раздела матрицы и волокна, концентрации напряжений вблизи концов и разрывов волокон, а также видам разрушения и его развитию. Большинство этих исследований носит качественный характер. Микроскопические фотоупругиеэкс-иерименты, использующие модели с подлинными волокнами мо-  [c.494]


Смотреть страницы где упоминается термин Разрушение границы раздела : [c.280]    [c.208]    [c.262]    [c.186]    [c.187]    [c.245]    [c.147]    [c.215]    [c.161]    [c.454]    [c.210]    [c.102]    [c.94]    [c.355]   
Разрушение и усталость Том 5 (1978) -- [ c.256 , c.390 ]



ПОИСК



Граница разрушения

Композиты с дисперсными частицами в металлической матрице, разрушение границы раздела между частицами и матрицей

Разрушение сдвиговое границы раздела



© 2025 Mash-xxl.info Реклама на сайте