Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая абсолютная

Второе начало термодинамики устраняет этот недостаток и позволяет установить термодинамическую шкалу, температура по которой не зависит от термометрического вещества и поэтому называется абсолютной. В самом деле, поскольку интегрирующий делитель ф( ) для элемента теплоты определяется только температурой, он может служить мерой температуры. Температура T=(p(t) и является термодинамической (абсолютной) температурой, поскольку, как мы покажем, числовое значение функции ф(/ от выбора эмпирической температуры не зависит, хотя вид этой функции зависит от выбора эмпирической температуры.  [c.61]


К" термодинамическим параметрам относятся физические величины, характеризующие макроскопическое состояние тел термодинамическое давление, термодинамическая (абсолютная) температура и удельный объем.  [c.6]

Термодинамическая абсолютная шкала температур 70—74, 144  [c.507]

Температура термодинамическая абсолютная.........  [c.253]

Температура термодинамическая абсолютная Температура условная Температура фазового перехода  [c.70]

Температура. Температура Т Е), определяемая соотноше-нием (1.28), совпадает с термодинамической абсолютной температурой, и соответственно статистическая энтропия совпадает с термодинамической энтропией (отметим, однако, что статистическая энтропия была определена без произвольной аддитивной постоянной). Это следует, во-первых, из того, что Т (Е), как показывает соотношение (1.47), определяет условие теплового равновесия, а во-вторых, из того, что Т (Е) представляет собой интегрирующий делитель для дифференциальной формы d Q. Первое обстоятельство является характерным общим свойством температуры, а второе согласуется с определением абсолютной температуры, основанным на втором законе термодинамики.  [c.32]

Исходным пунктом классической термодинамической теории является так называемое уравнение состояния , т. е. соотношение, связывающее давление р, удельный объем V и абсолютную температуру Г  [c.147]

Следует отметить, что параметром состояния является абсолютное давление. Именно оно входит в термодинамические уравнения.  [c.8]

Для задач технической термодинамики важно не абсолютное значение внутренней энергии, а ее изменение в различных термодинамических процессах. Поэтому начало отсчета внутренней энергии может быть выбрано произвольно. Например, в соответствии с международным соглашением для воды за нуль принимается значение внутренней энергии при температуре 0,01 °С и давление 610,8 Па, а для идеальных газов — при  [c.12]

Термодинамическая температурная шкала Термодинамическая тем-пература (абсолютная) т градус Кельвина К К  [c.15]

Основываясь на таком рассуждении, были введены элементарные понятия квантовой и статистической механики для интерпретации эмпирической стороны классической термодинамики. Квантовое представление об энергетических уровнях использовано для интерпретации внутренней энергии. Статистические теории приведены для того, чтобы показать, что термодинамические энергии и энтропия являются средними или статистическими свойствами системы в целом. Это позволяет понять основные положения второго закона, обоснование третьего закона и шкалу абсолютных энтропий. Также представлены методы вычисления теплоемкости и абсолютной энтропии идеальных газов. Численные значения абсолютной энтропии особенно важны для анализа систем с химическими реакциями. После рассмотрения этих основных положений технические применения даны в виде обычных термодинамических соотношений.  [c.27]


Это соотношение показывает, что абсолютную температуру можно интерпретировать как статистическое свойство, определяемое поведением большого числа молекул. Сама по себе концепция температуры теряет свое значение, когда число молекул мало. Например, вполне разумно измерять температуру газа в объеме 1 фут (28,3 л) при обычном давлении, когда число молекул в этом объеме порядка 10 или больше. Однако если в сосуде создать вакуум до такой степени, чтобы в нем было только 10 молекул, то понятие температура газа потеряет смысл, поскольку число молекул недостаточно для обеспечения статистическою распределения энергии. Любой прибор, измеряющий температуру, введенный в сосуд, покажет температуру, определяемую скоростями энергетического обмена (главным образом путем радиации) между измеряемым прибором и стенками сосуда. Однако указанную этим прибором температуру нельзя рассматривать как температуру 10 молекул газа в сосуде. Во всех последующих уравнениях термодинамические свойства будут выражены в значениях абсолютной температуры Т вместо л.  [c.107]

При графическом определении парциальных мольных величин из экспериментальных данных большую точность можно получить, если пользоваться значениями отклонения свойств от поведения идеальных растворов, чем производить вычисления через абсолютные величины. Концепцию об остаточном объеме, использованную раньше для выражения отклонения действительного объема газа от объема идеального газа при тех же самых температуре и давлении, можно применить к любому экстенсивному термодинамическому свойству раствора путем определения избыточного количества-той или иной величины по соотношению  [c.217]

Энергетическое состояние системы, имеющей огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией F, называемой свободной энергией (свободная энергия F=U — TS, где и — внутренняя энергия системы Т — абсолютная температура S — энтропия).  [c.44]

Переход металла из жидкого состояния в твердое (кристаллическое) называется кристаллизацией. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с меньшей свободной энергией или термодинамическим потенциалом F, т. е. когда свободная энергия кристалла меньше жидкой фазы. Если превращение происходит с небольшим изменением объема, то f = Я — TS, где л — полная энергия системы Т — абсолютная температура S — энтропия  [c.28]

Термодинамическим параметром состояния является только абсолютное давление. Абсолютным давлением называют давление, отсчитываемые от абсолютного нуля давления или от абсо-— лютного вакуума. При определении абсолютного давления различают два случая 1) когда давление в сосуде больше атмосферного и 2) когда оно меньше атмосферного. В первом случае абсолютное давление в сосуде равно сумме показаний манометра и барометра (рис. 1-2)  [c.14]

Абсолютная термодинамическая температура  [c.132]

Таким образом, второй закон термодинамики позволяет определить температуру как величину, не зависящую от природы рабочего тела, и указывает путь построения абсолютной термодинамической шкалы температур.  [c.133]

Очевидно, сложное поведение зависимостей ti, = /(л ) и ti, = = /(/, ) на докритических режимах связано с ростом скорости истечения на входе в сопло, а следовательно, с увеличением уровня относительных сдвиговых скоростей в камере энергоразделения и плотности потока кинетической энергии масс газа. Действительно, с ростом степени расширения в вихревой трубе О < < л < л р происходит рост скорости истечения, а следовательно, и рост снижения термодинамической температуры. Несмотря на рост абсолютных эффектов охлаждения при изоэнтропном расширении в соответствии с зависимостью (2.18) температурная эффективность возрастает в результате более интенсивного роста эффектов охлаждения, обусловленного ростом падения термодинамической темпе >атуры потока на выходе из сопла закручивающего устройства  [c.53]


Результаты экспериментов (рис. 2.34 и 2.35) подтверждают зависимость характеристик трубы от теплофизических свойств и состояния термодинамической системы. Абсолютные эффекты подогрева для всех трех режимов работы (см. рис. 2.34) при ц = 0,8-5-0,5 растут до температуры порядка 1500 К, после чего их темп роста снижается и, пройдя через максимум, начинает уменьшаться.  [c.96]

Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

Тройная точка воды—это температура, при которой нее три фазы воды (твердая, жидкая, газообразная) находятся в равновесии. Нижним пределом шкалы является абсолютный нуль. Термодинамическую температурную шкалу называют также абсолютной шкалой. Параметром состояния рабочего тела является абсолютная температура, обозначаемая символом Т и измеренная в кельвинах (К).  [c.7]

При металлургических и термодинамических расчетах пользоваться абсолютными значениями энтальпий (8.9), отсчитываемых от О К, нет особой необходимости. Можно установить другой уровень отсчета, более удобный и более определенный, так как в реальных расчетах нас интересуют лишь разности энтальпий перехода системы из одного состояния в другое.  [c.256]

Из сравнения первого столбца этой таблицы с третьим видно, что производная (85/817) обладает такими же свойствами, как величина 1 /Т, и по общему соглашению абсолютная термодинамическая температура определяется равенством  [c.75]

Прямой метод измерения абсолютной термодинамической температуры дает использование газового термометра. Из уравнения состояния идеального газа (4.16) видно, что его температуру Т можно определить, измеряя его давление Р при этой температуре и плотность р при данных значениях Т и Р. Кроме того, нужно еще знать массу его молекулы т, поскольку плотность числа частиц п = /т = р/т. И если поддерживать объем и число частиц газа неизменными, измерение температуры сведется просто к измерению давления.  [c.86]

Т — абсолютная термодинамическая температура (2.1) t — время (4.2) и — внутренняя энергия (2.8)  [c.7]

Прекращение пленочного кипения наступает при уменьшении температуры поверхности ниже определенного значения. В эти моменты- жидкость начинает касаться (смачивать) теплоотдающей поверхности. Опыты показывают, что прекращение пленочного кипения происходит тогда, когда температура поверхности нагрева t оказывается ра вной или обычно несколько более низкой, чем температура предельного перегрева жидкости tn. Последняя определяет тот максимальный перегрев жидкости, выше которого жидкая фаза оказывается термодинамически абсолютно неустойчивой она самопроизвольно распадается и испаряется. В работах [Л.82, 83] подробно исследовались величины температур предельного перегрева жидкостей с применением различных методов эксперимента. На рис. 4-21 показана зависимость ta= —fip) для воды [Л. 83]. На этом рисунке показана также линия насыщения ta=f p) воды. Характерной особенностью зависимости t =f(p) является то, что она близка к прямой линии, которая заканчивается в критической точке состояния вещества. В табл. 4-3 приведены значения tn для ряда жидкостей при атмосф ерном давлении [Л. 82].  [c.126]

В основании построения термодинамической температурной шкалы лежат J eдyющиe положения. Если в обратимом цикле Карно тело, совершающее цикл, поглощает теплоту при температуре и отдает тепло Q , при температуре Т , то отношение термодинамических (абсолютных) температур равно отношению количеств тепла QllQ2 Согласно положениям термодинамики значение этого отношения не зависит от свойств рабочего тела.  [c.58]

Этим теоретическое развитие стачистической термодинамики завершено. Уравнение (4-28) содержит все основные сведения, которые термодинамика может дать относительно свойств системы и обеспечить логическую основу для всех термодинамических анализов. Сумма состояний Z определяется энергетическими уровнями, абсолютной температурой и общим числом частиц, составляющих систему величина W определяется видом распределения энергии системы среди различных частиц, т. е. числом частиц на каждом дискретном энергетическом уровне.  [c.130]

Газовую термометрию Шаппюи можно считать истоком современной термометрии. Работа выполнялась в специально построенной лаборатории с превосходной термостабилизацией помещения, хотя в ней и отсутствовало многое из того, что сегодня считалось бы необходимым. Основная задача Шаппюи состояла в градуировке лучших ртутно-стеклянных термометров по абсолютной (т. е. термодинамической) температуре. Первая часть работы состояла в детальном изучении газового термометра постоянного объема, заполнявшегося водородом, азотом и углекислым газом в качестве рабочего тела. Результатом были отсчеты показаний набора ртутно-стеклянных термометров Тоннело, четыре из которых были типа а и четыре усовершенствованного типа б со шкалой, расширенной до —39 °С. На рис. 2.1 представлены результаты Шаппюи для трех газов, полученные в период 1885—1887 гг. [15]. Сочетание превосходной воспроизводимости термометров Тоннело и чрезвычайной тщательности работы с газовым термометром позволило получить погрешность менее одной сотой градуса почти во всем интервале — действительно выдающееся достижение.  [c.39]


Градуированным в О °С и 100 °С. Обе единицы градуса Кельвина— МПТШ-48 и °К термодинамический — могли совпадать в том и только том случае, если эти измерения с газовым термометром были абсолютно точны в определении значения —273,15 °С для абсолютного нуля температуры.  [c.50]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

В термометрии по абсолютным изотермам или в методе ГТПО, которые основаны на законе Бойля, необходимо знать в первом случае количество молей газа в газовой колбе, а во втором — значения второго, а возможно, и третьего вириаль-ного коэффициента. Выше отмечалось, что развитие газовой термометрии на основе зависимости температуры от какого-либо интенсивного свойства газа позволяет получить существенные преимущества. Такими свойствами газа могут быть скорость звука, коэффициент преломления и диэлектрическая проницаемость. Метод будет первичным (см. гл. 1), если для измеряемой величины и термодинамической температуры можно написать зависимость, в которую входят только То, R, к п другие постоянные. Эти постоянные не должны зависеть от термодинамической температуры. Из трех методов, которые основаны на измерении перечисленных интенсивных свойств, наиболее развита акустическая термометрия, поэтому рассмотрим ее прежде всего.  [c.98]

В гл. 3 рассматривались измерения термодинамической температуры газовым термометром и другими первичными термометрами. Было показано, что в температурной области выше примерно 30 К практически все численные значения термодинамической температуры основаны на газовой термометрии. Однако усовершенствования в термометрии излучения, возможно, это изменят. Уже измерения температурных интервалов в области от 630 °С до точки золота показали, что МПТШ-68 вблизи 800 °С содержит погрешность около 0,4 °С [15, 75]. Фотоэлектрический пирометр сам по себе не является первичным термометром, так как им можно измерить не абсолютную спектральную яркость источника, а только отношение спектральных яркостей двух источников, и невозможно, чтобы один из них находился в тройной точке воды. Однако фотоэлектрическая пирометрия может дать очень точные значения- для разностей температур  [c.381]

Если осуществить цикл между теплоотдатчиком с температурой Ti итеплоприемником, в который отводилось бы количество теплоты, равное нулю (Q2 = 0). то абсолютная температура холодильника должна была бы быть равной нулю. При этих условиях вся теплота Qi превратилась бы в полезную работу L=Qi и к. п. д. цикла был бы равен единице. Поэтому абсолютный нуль температуры представляет собой низшую из всех возможных температур, когда к. п. д. цикла Карно равен единице. Такая температура принимается за начальную точку абсолютной термодинамической шкалы.  [c.133]

Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]

Основываясь на результатах работы [223], можно предположить, что использование устройств, раскручивающих охлажденный и подогретый составляющие потоки, покидающие вихревые трубы, может повысить эффееты энергоразделения вследствие увеличения степени расширения в вихре. Это предположение получило экспериментальное подтверждение в работах А.П. Меркулова и его учеников, а также в работах В. И. Метенина и других исследователей из различных научных центров как в нащей стране, так и за рубежом [40, 112, 116, 137, 222, 226, 243, 245, 260, 262, 263, 270]. Экспериментально и теоретически подтверждено влияние на качество процесса теплофизических характеристик рабочего тела, в том числе и показателя адиабаты [35—40, 112, 116, 152, 153]. Частично получил опытное подтверждение вывод о пропорциональности абсолютных эффектов охлаждения от температуры газа на входе в сопло-завихритель [112,137]. Однако существенные расхождения теоретических предпосылок с результатами экспериментальных исследований не позволяют сделать вывод о достоверности рассматриваемой физико-математической модели процесса энергоразделения. Прежде всего расхождение заключается в характере распределения термодинамической температуры по поперечным сечениям камеры энергоразделения вихревых труб. В гипотезе рассмотрен плоский вихрь, поэтому объективности ради следует сравнить эпюры температуры для соплового сечения. Согласно [223], распределение полной температуры линейно по сечению, причем значение максимально на поверхности трубы. Эксперименты свидетельствуют о существенном удалении максимума полной температуры от поверхности, причем это отклонение не может быть объяснено лищь неадиабатностью камеры энергоразделения [17, 40, 112, 116, 207, 220, 222, 226, 227-231, 245, 251, 260, 262, 263, 267, 270]. Опыты показывают, что эффективность энергоразделения существенно зависит от геометрии трубы и длины ка-  [c.154]


Иначе говоря, постулат о термодинамическом равновесии применяется на практике лишь в рамках конкретно поставленной задачи, а не как абсолютное утверждение о невозможности вообще никаких изменений в равновесной системе. Поэтому, если отдельные составляю111,ие общего термодинамического равновесия, такие как тепловое, механическое, химическое равнове-  [c.35]


Смотреть страницы где упоминается термин Термодинамическая абсолютная : [c.18]    [c.295]    [c.318]    [c.136]    [c.29]    [c.10]    [c.8]    [c.49]    [c.46]   
Техническая термодинамика Изд.3 (1979) -- [ c.0 ]



ПОИСК



Абсолютная термодинамическая температура

Абсолютная термодинамическая температура шкала температур

Абсолютная термодинамическая шкала и термодинамическая шкала Цельсия

Абсолютный нуль термодинамической

Абсолютный нуль термодинамической температуры

Градус абсолютной термодинамической шкал

Излучение абсолютно черного тела, термодинамические свойства

Поведение термодинамических систем при температуре, стремящейся к абеолютному нулю. Принцип недостижимости абсолютного нуля

Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Температура абсолютная по термодинамической шкале

Термодинамическая температурная абсолютная шкала

Термодинамический к. п. д. цикла Карно. Понятие об абсолютной термодинамической шкале температур

Шкала температур абсолютная термодинамическая (Кельвина)

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) границы

Шкала температур абсолютная термодинамическая (Кельвина) исторический обзор

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур абсолютная термодинамическая (Кельвина) нижний предел

Шкала температур абсолютная термодинамическая (Кельвина) области

Шкала температур абсолютная термодинамическая (Кельвина) платинового термометра сопротивления

Шкала температур абсолютная термодинамическая (Кельвина) положение

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление

Шкала температур абсолютная термодинамическая (Кельвина) стандартная термометрическая

Шкала температур абсолютная термодинамическая (Кельвина) экстраполяция

Шкала температур абсолютная термодинамическая поддержание

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкала температур абсолютная термодинамическая усовершенствование



© 2025 Mash-xxl.info Реклама на сайте