Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет деформации и напряжени сварки

Для описания температурных полей прп расчетах деформаций и напряжении можно пользоваться теорией тепловых процессов при сварке [8]. Теплофизические коэффициенты рекомендуется принимать по табл. 2.  [c.143]

Для описания температурных полей при расчете деформаций и напряжений можно пользоваться теорией тепловых процессов при сварке. Эта теория дает хорошее совпадение расчетов  [c.137]


При сварке реальных конструктивных элементов возникают не только продольные, но и другие компоненты деформаций и напряжений. Их можно определять расчетами на основе теории пластичности (см. п. 11.4) или экспериментами для сложного напряженного состояния (см. п. 11.5).  [c.433]

Ход расчета остаточных активных внутренних осевых усилий, остаточных деформаций и напряжений от продольной усадки при сварке удобно разбить на отдельные этапы, выполнение которых состоит из последовательных расчетных операций.  [c.600]

Применяемые в настоящее время расчеты прочности и устойчивости в ряде случаев не учитывают изменений свойств основного металла и вызываемых сваркой деформаций и напряжений. Прочность сварных соединений оценивается обычно по прочности наиболее слабой зоны, которую определяют на основании сравнения результатов испытания образцов, вырезанных из различных зон сварного соединения. При этом совместная работа смежных зон с различными свойствами и механическими характеристиками никак не учитывается. Напряженное состояние определяется преимущественно от внешних сил, во многих сл) чаях без учета его неравномерности и начального напряженного состояния, возникающего при изготовлении конструкции.  [c.94]

Предложенная им методика изучения и расчета сварочных напряжений и деформаций получила общее признание и послужила научной базой для подтверждения возможности применения сварки для любых металлоконструкций и решения других проблемных вопросов сварки. Основные положения теории сварочных деформаций и напряжений изложены ниже.  [c.200]

При современном состоянии развития науки о сварке и сварочной техники стало возможным определять расчетным путем оптимальные режимы сварки, свойства металла сварных соединений, величину сварочных деформаций и напряжений, а также режимы технологических способов по предупреждению либо снятию (или снижению) последних в изготовляемых конструкциях. В связи с этим в практику проектирования технологических процессов сварочной техники за последние годы начали внедряться научно обоснованные инженерные расчеты [4], [5] и [8]. Особенно широкое применение получили расчетные методы определения оптимальных режимов сварки, т. е. обеспечивающих получение сварных соединений высокого качества.  [c.42]

Упомянутые материалы, наряду с общими указаниями, содержат также требования и рекомендации по конструированию сварных соединений и конструкций железнодорожных вагонов указания по механической обработке и упрочняющему поверхностному наклепу сварных соединений расчету сварочных деформаций и напряжений (включая определение общих остаточных напряжений в стенках, крыше, раме кузова и тележки, вызванных контактной и дуговой сваркой, местных остаточных деформаций от потери устойчивости) и мероприятия по предотвращению появления сварочных деформаций и напряжений при производстве вагонов.  [c.369]


Превращения при сварке протекают в обстановке непрерывного изменения температуры, деформаций и напряжений вследствие интенсивного местного неравномерного нагрева металла. Оценка изменения температуры при сварке плавлением в настоящее время не представляет затруднений. Для этой цели широко используются методы инженерных расчетов тепловых процессов, разработанные в СССР H.H. Рыкалиным и его школой [22—24]. Основные выводы теории тепловых процессов и ее расчетные методы заложены в основу анализа особенностей превращений в сплавах титана и при разработке системы критериев расчета режимов их сварки.  [c.18]

Сварочные деформации и перемещения по аналогии с напряжениями могут быть временными и остаточными. В зависимости от вызываемых искажений формы и размеров конструкции различают следующие виды перемещений укорочение, изгиб, потеря устойчивости, скручивание и др. Эти (как правило, сложные) перемещения конструкции можно представить в виде суммарного проявления отдельных элементарных видов деформаций в зоне сварных соединений. Поэтому основная задача — умение правильно определить элементарные виды деформаций в зависимости от режимов сварки, жесткости свариваемых элементов и других параметров, которые используются для расчета перемещений конструкции [17].  [c.410]

К недостаткам этих сплавов следует отнести следующие 1) относительно большую стоимость основного металла и сварки, требующей применения инертных газов 2) почти в три раза меньшее значение модуля продольной упругости, что влияет на увеличение упругих деформаций и уменьшает критические напряжения при расчетах устойчивости стержней и балок 3) возможность местной коррозии при контакте со сталью, что требует специальных изолирующих покрытий и прокладок в местах соединений разнородных материалов 4) почти в два раза большее значение коэффициента линейного расширения, приводящее к большим температурным деформациям при сварке 5) низкие значения предела выносливости a i основного металла (у сталей, приведенных в табл. 1.1.1, отношение 0,35, а у алюминиевых сплавов, приведенных в табл. 1.1.8, л 0,14).  [c.20]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

Следует отметить, что расчет реактивных напряжений, вызванных сваркой заделок, выполнялся в предположении о неизменности объемов продольного и поперечного укорочения и соответственно начальных деформаций вдоль шва.  [c.315]


Допускаемые напряжения. Прочность сварных соединений, полученных конкретным способом сварки, зависит от следующих факторов качества основного материала характера действующих нагрузок (постоянные или переменные) технологических дефектов сварки (шлаковые и газовые включения, непровары и т. п.) деформаций, вызываемых сваркой различной структуры и свойств наплавленного и основного металла и др. Поэтому допускаемые напряжения при расчете сварных соединений принимают пониженными в долях от допускаемых напряжений для основного металла. Нормы допускаемых напряжений для сварных соединений деталей из низко- и среднеуглеродистых сталей при статической нагрузке указаны в табл. 3.2, а при переменных нагрузках — см. [12] и [18].  [c.272]

Закономерности протекания термомеханических процессов при сварке и экспериментальные данные позволяют утверждать, что относительная кольцевая деформация шва от поперечной усадки сосуда в зоне шва и остаточных напряжений в нем составляет величину порядка 3—5 % от относительной кольцевой деформации шва в предельном состоянии [ё(ш], поэтому составляюш ими и в расчете можно пренебречь.  [c.355]

В расчетах несущей способности по настоящей методике учитываются числа циклов нагружения, температуры, асимметрии цикла деформаций (напряжений), нестационарность нагружения, остаточные напряжения от сварки, исчерпание пластичности при технологических и монтажных операциях, снижение пластичности за счет нейтронного облучения и деформационного старения, наличие сварных швов.  [c.217]

Вот и перевернута последняя страница учебного пособия. Может быть, вы просто бегло просмотрели его, а может быть, досконально изучили - в любом случае вы убедились, сколь многообразна и интересна эта отрасль техники - сварка. Вы получили общие сведения о сварке узнали какие бывают группы способов сварки, какие различают сварные соединения и швы, как их узнать на чертеже сварной конструкции. Составили общее представление о металлургических и физических процессах в сварочной ванне и в металле сварного соединения, о технологической прочности и свариваемости металлов. Познакомились с особенностями расчетов сварных соединений на прочность и составили представление о сварочных напряжениях и деформациях.  [c.387]

Причины этих разрушений связаны как с использованием новых материалов, так и со стремлением создать более эффективные конструкции. Внедрение высокопрочных конструкционных сплавов, широкое использование сварки, применение в некоторых случаях деталей с утолщенными сечениями, использование уточненных методов расчета способствовали снижению несущей способности элементов конструкций до критического уровня, при котором допускается локальная пластическая деформация без разрушения. В то же самое время особенности технологии сварки, наличие остаточных напряжений после механической обработки, несовершенства сборки повысили потребность в специальном создании локальных пластических деформаций в качестве средства предотвращения разрушения. Увеличение интенсивности переменных во времени эксплуатационных нагрузок и повышение агрессивности окружающей среды также в ряде случаев способствовали разрушению. Все это явилось причиной развития основных положений и разработки систем контроля. Подобные системы обычно включают в себя контроль номинальных напряжений и размеров существующих трещин, с тем чтобы они всегда оставались ниже уровня, который является критическим для материала, используемого в элементе конструкции или машины.  [c.61]

С точки зрения анализа напряжений влияние температурных эффектов на пластичность может быть изучено на двух уровнях в зависимости от того, какая применяется теория термомеханического поведения — связанная или несвязанная. Большинство важных для техники проблем, касающихся разрыхления, напряжений при сварке, остаточных напряжений после закалки, расчета топливных элементов реакторов и т. д., могут быть достаточно точно изучены в рамках несвязанной теории. При таком подходе температура входит в соотношения между напряжениями и деформациями только благодаря члену, определяющему тепловое расширение кроме того, учитывается влияние температуры на константы материала.  [c.203]

Сваривать полосы встык по длине и вваривать заплаты следует с предварительным выгибом (рис. 27, з, и). Этот способ называют способом обратной деформации. Им успешно пользуются также при автоматической сварке тавров (рис. 27, к). Стрелку выгиба выбирают с таким расчетом, чтобы после сварки изделие приняло правильную форму и при этом образовались бы незначительные остаточные напряжения.  [c.45]

Сварка обратно-ступенчатыми швами (рис. 25). Этот способ заключается в том, что швы длиной более 500—600 мм разбивают на участки в 100—200 мм с таким расчетом, чтобы на сварку каждого участка хватало одного или двух-трех электродов. Сварка ведется в том порядке, как показано на рис. 25, а, или (при большой длине шва) на рис. 25,6. При сварке стыков труб больших диаметров порядок сварки должен быть таким, как показано на рис. 25, в. При многослойных швах места начала и конца участков разных слоев должны быть смещены (рис. 25, г). Обратно-ступенчатый порядок сварки позволяет более равномерно распределить напряжения и деформации в шве.  [c.89]

Уменьшения внутренних напряжений достигают следующими мерами. Длинные швы выполняют обратноступенчатым способом на проход (рис. 53, о). Многослойную сварку выполняют каскадным способом или горкой. При этом хорошие результаты дает послойная проковка шва (кроме первого и последнего слоя). Швы накладывают с таким расчетом, чтобы последующий шов вызывал деформации, обратные возникшим от предыдущего шва (рис. 53, -б, в). Последовательность выполнения швов должна допускать свободную деформацию элементов конструкций. Например, при сварке настила из нескольких листов следует в первую очередь выполнять швы, соединяющие листы полос, и лишь затем швы, соединяющие эти полосы между собой (рис. 54).  [c.60]


Нагрев и охлаждение металлов вызывают изменение линейных размеров тела и его объема. Эта зависимость выражается через функцию свободных объемных изменений а, вызванных термическим воздействием и структурными или фазовыми превращениями. Часто эту величину а называют коэффициентом линейного расширения. Значения коэффициентов а в условиях сварки следует определять дилатометрическим измерением. При этом на образце воспроизводят сварочный термический цикл и измеряют свободную температурную деформацию ёсв на незакрепленном образце. Текущее значение коэффициента а представляют как тангенс угла наклона касательной к дилатометрической кривой дг в/дТ. В тех случаях, когда полученная зависимость Вс Т) значительно отклоняется от прямолинейного закона, в расчет можно вводить среднее значение коэффициента ср = tg0 p, определяемое углом наклона прямой линии (рис. 11.6, кривая /). Если мгновенные значения а = дгс /дТ на стадиях нагрева и охлаждения существенно изменяются при изменении температуры, то целесообразно вводить в расчеты сварочных деформаций и напряжений переменные значения а, задавая функции а = а(Т) как для стадии нагрева, так и для стадии охлаждения. 4В  [c.413]

Важное теоретическое и практическое значение имеют исследования деформаций и напряжений, возникающих при сварке, выполненные проф. И. П. Трочуном. Эти исследования позволили разработать сравнительно простой и пригодный для производственной практики инженерный метод расчета остаточных сварочных деформаций и напряжений в металлоконструкциях.  [c.26]

Так как у идеального упругопластического материала в пластической области ог не зависит от Впль то пластические деформации целиком определяются деформациями окружающей упругой зоны и условиями закрепления детали. По известным компонентам деформации можно определить компоненты напряжений. Процесс образования напряжений при сварке, как правило, нельзя считать простым нагружением, так как соотношения компонент деформации и напряжения в ходе нагружения существенно изменяются. Поэтому для расчета напря-  [c.87]

Возникновение собственных сварочных деформаций и напряжений обусловлено неравномерным распределением температуры при сварке, фазовыми превращениями, протекающими с изменением удельного объема, и жесткостью свариваемых элементов, препятствующей развитию деформаций. В отличие от тепловых процессов, процессы изменения полей внутренних деформаций и напряжений первого рода при сварке изучены в меньшей степени, и расчеты их, как правило, весьма сложны. В настоящее время инженерные расчеты, разработанные в СССР В. П. Вологдиным [80], Н. О. Окербломом [81, 82], Г. А. Николаевым [83], Н. Н. Ры-  [c.44]

О кинетике изменения и величине внутренних деформаций и напряжений в околошовной зоне при сварке титана данных очень мало. Однако, располагая сведениями о коэффициенте линейного расширения титана (8,5 10 " 1/°С при 0—100° в сравнении с 11,7 10 1/°С для железа), о модуле упругости (11250 в сравнении с 21000 кГ/мм для железа) и характере изменений удельного объема при протекании фазовых превращений, можно в первом приближении оценить знак и порядок величин остаточных деформаций и напряжения. Превращение [3 а в титане и его а- и а + 13-снлавах, а также превращение (3 со в а+13-сплавах титана протекают пе с увеличением объема, как превращение а в железе и стали, а с небольшим уменьшением его. Едипствепное превращение в титане и его сплавах, которое происходит с увеличением объема, — это гидридное (на 15% при Т1Н 100%). Однако расчеты показывают, что при содержании 0,01% Ы изменение удельного объема технического титана вследствие гидридного превращения не превышает 0,1%. При полном превращении аустенита в мартенсит, например в стали с 0,38% С и 1,4% Сг, удельный объем увеличивается в среднем на 5%, т. е. в 50 раз больше Столь малый общий объемный эффект гидридного превращения в око.яо-шовной зоне, вероятно, не может привести к изменению знака остаточных продольных растягивающих деформаций и напряжений первого рода.  [c.49]

ДИЛИ при помощи механического съемного тензометра с инди каторной головкой (2.14]. Замеряли деформации на базе 100 мм в двух взаимно перпендикулярных направлениях у и х до и после сварки. По результатам деформаций, обусловленных сваркой штуцеров, на основе закона Гука определяли реактиВ ные напряжения а х и Оуу. Расчет реактивных напряжений про  [c.313]

Для перехода от значений внешних нагрузок (номинальных напряжений) к локальным напряжениям и деформациям необходимо располагать в соответствии с нормами расчета энергетических конструкций на малоцикловую усталость [2] значениями кэффициен-тов концентрации напряжений (при упругих деформациях) и коэффициента концентрации деформаций К , если местные напряжения превышают предел текучести материала. Если для геометрических концентраторов напряжений типа отверстий, галтелей, выточек и т. п. такие данные в области упругих деформа ий широко представлены в работах [3, 4], то применительно к сварным соединениям строительных конструкций такая систематизация до настоящего времени отсутствует. В связи с этим были проведены исследования зон концентрации напряжений и деформаций в стыковых и угловых швах при простейших способах нагружения (растяжение, изгиб) с применением [5] методов фотоупругости и фотоупругих покрытий. При исследованиях варьировались следующие величины, характеризующие геометрию сварного шва и определяющие уровень концентрации напряжений для стыковых швов — относительная высота наплавленного металла к его ширине q e, относительная ширина шва е/5, радиус перехода р и толщина свариваемых пластин з для угловых швов — соотношение катетов, радиус перехода р и толщина з. Диапазон изменения этих параметров был выбран на основе стандартных допусков на геометрию швов, выполненных ручной дуговой сваркой плавящимся электродом, автоматической и полуавтоматической под слоем флюса и дуговой сваркой в защитных газах. Было принято, что в стыковых сварных соединениях относительная высота валика шва не превышает 0,7, а относительная ширина шва находится в пределах 0,03 е/з 3,4. С увеличением толщины свариваемых пластин относительная высота и относительная ширина шва.  [c.173]

Остаточные деформации (напряжения) от сварки и других технологических операций (гибки, правки, наклепа) — Oq учитывают при определении коэффициентов асимметрии, г путем их алгебраического суммирования с деформациями (напряжениями) от нагрузок при этом значение = = Од принимают не более Oq 2 для основного металла или металла шва и в расчете используют только остаточные деформации (напряжения) растяжения.  [c.128]

Расчеты на прочность в номинальных напряжениях по характеристикам статических свойств с учетом опыта проектирования проводят для обоснования выбора основных размеров элементов конструкций — толщин стенок и диаметров. Для обоснования выбора конструктивных форм (наличие зон концентрации), режимов теплового и механического нагружения, технологии (сварка, термообработка), уровня дефектоскопического контроля с учетом условий эксплуатации следует провести дополнительные поверочные расчеты на прочность и ресурс. Для выполнения этих расчетов рекомендуется использовать деформационные подходы, отражающие роль указанных выше факторов. Кроме того, для наиболее ответственных машин и конструкций проводят модельные и натурные тензометрическне испытания, из которых непосредственно получают значения номинальных и местных деформаций. Для определения соответствующих запасов прочности н ресурса эти значения деформаций сопоставляют с критериальными значениями.  [c.212]


Разработанные способы расчета позволяют определить остаточную деформацию сварного соединения в зависимости от направления усадки и условий сборочно-сварочных работ [17]. Рекомендуется следующая последовательность расчета остаточных деформаций в сварных соединениях и сварных конструк-цних в первую очередь необходимо найти сечение активных зон сварных швов, остаточные активные внутренние усилия, действующие по линии каждого шва, и реактивное напряжение осевого сжатия аг. Имея эти данные, можно рассчитать деформации в сварных конструкциях для заданных режимов сварки.  [c.103]

На рис. 8 представлены расчетные эпюры остаточных напряжений в стальной и алюминиевой полосах сечением 400X Юли, сваренных встык за один проход. Режим сварки пластин из иизкоуглеродистой стали ток / = 725 а напряжение дуги = = 35 в скорость сварки о =0,84 см/сек. Режим сварки пластин из сплава АМг ток /=340 а напряжение дуги =26 в скорость сварки о д=0,44 см1сек. Расчеты выполнены в соответствии с расчетными предположениями, принятыми в работе [И] и позволяющими оценивать в первом приближении порядок величины внутренних деформаций или фиктивных упругих напряжений, т. е. напряжений, вычисленных без учета развития пластической составляющей остаточных внутренних деформаций, достигающей значительной величины в тех случаях, когда предел текучести намного меньше произведения аЕТ.  [c.247]

Кесткое закрепление в приспособлении не только на время сварки и остывания изделия, но и при термической обработке для снятия остаточных напряжений. позволяет у.меньщить остаточные деформации изгиба и потери устойчивости. При расчете таких прпспособлений в дополнение к сказанному для случая 2 необходима проверка на жесткость в условиях выдержки в печи под действием сил тяжести, когда предел текучести металла оказывается заметно меньшим и происходит ползучесть металла.  [c.236]


Смотреть страницы где упоминается термин Расчет деформации и напряжени сварки : [c.422]    [c.37]    [c.407]    [c.22]    [c.278]    [c.296]    [c.134]    [c.596]    [c.73]    [c.69]    [c.88]    [c.114]    [c.283]    [c.4]   
Сварка и свариваемые материалы Том 1 (1991) -- [ c.40 ]



ПОИСК



340, 341 — Расчет напряжений деформаций

597 — Деформации и напряжения

Деформации и напряжения при сварке

Расчет по напряжениям



© 2025 Mash-xxl.info Реклама на сайте