Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия асимметрии

Энергия асимметрии Еа. Наиболее стабильны ядра с одинаковым числом протонов и нейтронов. В действительности же чаще всего число Z меньше N. Чтобы учесть это, необходимо в выражение для Есв ввести член, который равен нулю при I = N и отрицателен при N > I. Это энергия асимметрии Еа.  [c.81]

Рис. 3 2 к вычислению энергии асимметрии ядра Еа, обусловленной различием числа нейтронов и протонов в ядре. Рассмотрен пример ядра Са (п = = 2), содержащего 44 нуклона.  [c.82]


Известно, что электродинамика Максвелла в современном ее виде приводит к заключению об асимметрии в явлениях движения тел, которая, по-видимому, несвойственна этим явлениям. Представим себе, например, электродинамическое взаимодействие между магнитом и проводником с током. Наблюдаемое явление зависит здесь только от относительного движения проводника и магнита, в то время как согласно обычному представлению приходится строго различать два случая, в которых движется или одно, или другое из этих тел. В самом деле, если движется магнит, а проводник неподвижен, то вокруг магнита возникает электрическое поле с определенной энергией, создающее ток Б тех местах, где находятся части проводника. Если же неподвижен магнит, а движется проводник, то вокруг магнита не возникает никакого электрического поля, но зато мы обнаруживаем в проводнике электродвижущую силу, которой самой по себе не соответствует никакая энергия, но которая (считаем, что в обоих обсуждаемых случаях относительное движение одинаково) вызывает электрические токи той же величины и того же направления, что и токи, вызванные электрическим полем в первом случае.  [c.372]

Во всех рассмотренных случаях считается, что координатная часть энергии взаимодействия V (г) зависит только от расстояния между взаимодействующими нуклонами, т. е. обменные силы являются центральными и не зависят от относительной скорости нуклонов. Такие обменные центральные силы не приводят к состояниям, являющимся суперпозицией состояний с разными значениями орбитального квантового числа I, и не могут привести к асимметрии поля ядерных сил и объяснить возникновение квадру-польного электрического момента дейтрона. Для объяснения возникновения квадрупольного электрического момента вводятся дополнительно тензорные силы.  [c.160]

Кольцевой эффект, являющийся также разновидностью поверхностного эффекта, объясняется асимметрией магнитного поля витка или соленоида. Во внутренней полости (рис. 1-7) оно значительно сильнее, чем снаружи, вследствие чего главная часть электромагнитной энергии поступает в проводник изнутри.  [c.17]

В уравнение (4.25) учитывается свойство среды, в которой происходит распространение усталостной трещины при произвольном уровне одноосного циклического нагружения без асимметрии цикла в тестовых условиях опыта, через модуль упругости и безразмерный коэффициент пропорциональности f. Введенный коэффициент характеризует условие энергетического баланса в каждый из моментов времени нагружения. Он заключается в сохранении постоянства выделения энергии на разрушение единицы объема материала вдоль фронта трещины перед ее вершиной.  [c.200]


При нерегулярном нагружении возникает дополнительное влияние на рост трещины переходных режимов нагружения, которые усиливают или ослабляют влияние асимметрии цикла. Это приводит к возникновению переходных процессов в пределах нескольких циклов нагружения после смены режима. Уменьшение минимального напряжения, что соответствует увеличению асимметрии цикла без изменения максимального напряжения цикла, в течение нескольких переходных циклов нагружения сопровождается постепенным увеличением, а далее — снижением шага усталостных бороздок. Аналогичным образом реализуется переход от меньшего к большему максимальному напряжению при неизменном минимальном напряжении цикла, как в случае однократного изменения режима, так и в случае его многократного изменения в направлении роста трещины. Наличие зоны пластической деформации в вершине трещины порождает эффекты взаимного влияния нагрузок на переходных режимах нагружения. Наблюдаемые флуктуации обусловлены неравномерностью протекания переходных процессов вдоль всего фронта трещины. Вносимое возмущение на переходном режиме нагружения материала в процесс роста трещины в результате возрастания размаха напряжения первоначально реализует более интенсивное повреждение материала в срединной части образца. Только после выравнивания распределения энергии вдоль всего фронта трещины в течение некоторого периода циклического  [c.290]

Влияние двухосного напряженного состояния материала на СРТ и долговечность резко снижается при возрастании асимметрии цикла. При максимальной асимметрии цикла 0,8 влияние двухосного нагружения проявляется достаточно слабо. Этот факт может быть объяснен доминированием механизма разрушения путем скольжения при одноосном нагружении с асимметрией R = 0,8n более (см. раздел 6.1). При небольшой амплитуде переменного цикла роль второй компоненты нагрузки не проявляется в кинетике трещин из-за того, что размер зоны пластической деформации сам по себе мал. Изменить размер зоны можно за счет мощного источника энергии, который вызывает существенное пластическое деформирование материала. В условиях высокой асимметрии цикла вторая компонента нагрузки не может оказаться таким источником энергии. Величина ее амплитуды определяется асимметрией i = 0,8 и поэтому очень  [c.327]

Противоположный критерий следует рассматривать при переходе к > 1,0 за счет возрастания второй компоненты нагружения при сохранении уровня первого главного напряжения. В этом случае усиливаются процессы скольжения при зарождении трещины, на что указывает резкое снижение долговечности, и одновременно при всех уровнях асимметрии цикла происходит зарождение трещины менее чем за 10 % от всей долговечности. Остальная часть приходится на процесс распространения трещины. В этом случае резкое возрастание величины второго главного напряжения по сравнению с компонентой Oi приводит к возрастанию уровня энергии, который связан с формированием зоны пластической деформации перед вершиной трещины. Это вызывает увеличение зоны пластической деформации и приводит к резкому снижению периода зарождения и роста трещины.  [c.328]

Очевидно влияние асимметрии цикла на роль угла скручивания в развитии усталостных трещин. Для закрытых (поверхностных) трещин постоянный скручивающий момент увеличивает или уменьшает уровень энергии, затрачиваемой у кончика трещины на ее продвижение. Для открытых сквозных трещин, что имело место в испытанных образцах, контактное взаимодействие берегов тре-  [c.653]

Раскрытие уравнения (5.67) вызывает большие трудности, связанные с необходимостью опытного определения многих коэффициентов. Эта задача особенно усложняется при переходе к оценке накопленной повреждаемости или долговечности, что обычно более необходимо при расчетах. Один из возможных способов создания расчетного уравнения заключается в ограничении общности зависимости (5.67) аппроксимацией экспериментальных данных, полученных с различной асимметрией цикла, т. е. при различных соотношениях энергий деформирования в полуциклах (например, как это изложено в гл. VI).  [c.141]


Вторая глава посвящена теоретическому и экспериментальному определению частотного диапазона применимости предлагаемых методов расчета элементов машиностроительных конструкций, в частности стержней и амортизаторов. Приводится необходимая для расчета вынужденных колебаний конструкций экспериментальная информация о демпфирующих свойствах балок с антивибрационными покрытиями, о потерях энергии при колебаниях в разъемных соединениях и амортизаторах. Анализируются результаты экспериментальных исследований жесткости амортизаторов в области частот 0,01—10 Гц и различной асимметрии цикла нагружения. Делается попытка оценить предельную виброизоляцию резинометаллических амортизаторов.  [c.5]

С противоположной стороны РК, с отрицательной (при асимметрии ступени) перекрышей, к. п. д. резко снижается. Общий к. п. д. ступени остается неизменным, однако его уровень невысок tie = 81,0- 81,5 %, Це = 85,0 5-85,5 %. Большая разница между величинами г е и ц е свидетельствует о высоком уровне выходных потерь энергии, вызываемом существенной неравномерностью потока на выходе из ступени. Анализ опытных данных показывает, что главной причиной этой неравномерности является влияние открытого радиального зазора.  [c.163]

В гл. 1 отмечалось, что элементами структуры полимера могут быть звенья макромолекул, непосредственно макромолекулы, глобулы, пачки, сферолиты и т. д. Структурные изменения в клеевых прослойках в зависимости от механизма протекающего процесса могут осуществляться на различном уровне или одновременно на нескольких структурных уровнях. В частности, ввиду большой асимметрии размеров макромолекул и элементов надмолекулярных структур под действием структурных превращений, а также при наложении силового или температурного поля протекает деформация полимерной системы. Последняя в свою очередь может сопровождаться ориентацией структурных элементов. iB условиях клеевой прослойки в первом приближении следует ожидать двухосную ориентацию структурных элементов в плоскости склеивания. Этому в известной мере способствует воздействие внешнего теплового поля, так как флуктуации тепловой энергии интенсифицируют ориентацию звеньев макромолекул и структур из них.  [c.48]

Пусть две траектории электронов 1 та 2 проходят на мин. расстоянии х от положительно заряженного кулоновского центра С (рис. 1). В зависимости от того, слева (х < 0) или справа (х > 0) от центра проходит электрон, он рассеивается соответственно направо или налево. Бели спин электронов направлен вдоль оси -fy, их магн. момент, д направлен вдоль —у (т. к. е < 0). На спины электронов, движущихся слева и справа от кулоновского центра, действуют противоположно направленные магн. поля, индуцированные относит, движением этого центра. Это приводит к разл. изменению потенц. энергии (х) электронов на траекториях 1 тя. 2 (рис. 1). Для траектории 1 энергия спин-орбитального взаимодействия дН прибавляется к энергии (х) эл.-статич. взаимодействия для траектории 2 вычитается из (ж), Т. о., суммарная потенц. энергия оказывается нечётной ф-цией. При этом электронам, пролетающим слева от С, соответствует больший рассеивающий потенциал, чем для электронов, пролетающих на том же расстоянии справа от С. Различие в потенциалах приводит к увеличению интенсивности рассеяния вправо по сравнению с интенсивностью рассеяния влево. Очевидно, что при изменении ориентации спинов (или скоростей) на противоположную знак асимметрии изменится.  [c.215]

Эффект увлечения инерциальных систем проявляется в асимметрии геодезич. линий, зависящей от взаимной ориентации направления движения частицы и оси вращения. В метрике Керра при движении вдоль геодезических сохраняются энергия частицы и проекция её момента импульса Lj на ось вращения.  [c.454]

Здесь Д—проекции спина ядра на ось oz, определяемая квантовым числом т ф ,,, ф —вторые производные потенциала ф электрич. кристаллич. поля по координатам X, у, Z, удовлетворяющие ур-нию Лапласа (Ф г+Ф +Ф1г = = 0). Это позволяет характеризовать поле 2 переменными градиентом вдоль ог ед = <р и параметром асимметрии Г = (ф —<р ,)/ф . Для аксиально-симметричного поля энергия уровней определяется ф-лой  [c.675]

При нарушении симметрии возбуждения возможность упро-ш,ения исчезает и спектр собственных частот удваивается. Возникает небольшая ассимметрия формы колебаний, которая может быть учтена по пп. а). Средняя точка участка 27 перестает быть узлом и передает энергию асимметрии возбуждения из одной половины системы в другую.  [c.66]

Комптон-эффект является основной причиной возникновения мош ного электромагнитного импульса (ЭМИ) длительностью менее 1 с непосредственно после атомного взрыва. 0бразуюш иеся после деления урана-235 кванты имеют энергию Нгу 0,8 МэВ. Взаимодействуя с воздухом, они выбивают из атомов электроны, которые приобретают релятивистские энергии. Асимметрия движения электронов в вертикальном направлении анологична импульсу тока в проводнике. В результате генерируется мош ное излучение, образую-ш ее начальный импульс, и происходит разделение электронов и ионов. Затем электроны движутся в обратном направлении, порождая новый импульс. Поражаюш ее действие импульса связано с возбуждением ЭДС индукции в цепях радиоэлектронной и электротехнической аппаратуры.  [c.482]

Мэе, т. к. при большей энергии асимметрия рассеяния становится очень малой. Практически Л — относит, эффектив-ность регистрации поляриметром квантов, поля-рнзованных в перпендикулярных плоскостях, оказывается <В, рассчитанного по ф-ле (3), из-за конечных угловых размеров детекторов. Воны-тах [8] для случая у-кас- о.б када в Рс для О 90  [c.141]

Тепловыделение в микрообъемах тем больше, чем больше амплитуда напряжений и меньше коэффициент асимметрии цикла. С другой стороны величина местного повышения температуры зависит от свойств материала и его структурных составляющих. Повышение температуры в микрообъемах тем больше, чем меньше теплопроводность и теплоемкость материала и выше его циклическая вязкость, определяюндая (на стадии упругих деформаций) долю необратимого превращения энергии колебаний в тепловую энергию.  [c.288]


Наконец, отмеченная симметризация деления с ростом энергии возбуждения делящегося ядра также говорит в пользу обо-лочечного механизма возникновения асимметрии, так как известно, что оболочечные эффекты проявляются только при малых энергиях возбуждения. Высота пиков тонкой структуры также уменьшается с ростом энергии возбуждения.  [c.402]

Тепловое расширение решетки или изменение равновесного объема Vo при изменении температуры, характеризуемое температурным коэффициентом объемного расширения — AV j VoAT), обусловлено асимметрией взаимодействия между атомами, вызванной тем, что сила отталкивания возрастает быстрее при сближении атомов, чем сила притяжения при их удалении друг от друга. Это приводит к непараболическому виду кривой потенциальной энергии взаимодействия (рис. 6.13). При Т атомы колеблются так, что межатомное расстояние изменяется от А до В со средним значе-ннем (рис. 6.13). При более  [c.185]

В расчетах Температурного коэф-фнци-ента линейного расширения факт асимметрии учитывается введением в формулу для потенциальной энергии взаимодействия ангармонических членов. Это делается так. Так как при колебаниях решетки ее атомы испытывают небольшие отклонения от положений равновесия, то энергию раскладывают в ряд, ограничиваясь членами до четвертого порядка включительно  [c.185]

Формула (19,13) определяет зависимость параметра корреляции Еас от состава сплава и температуры. Концентрационная зависимость Еас изображается, вообще говоря, кривой ЁАс (са), несимметричной относительно прямой Са = Vs- Эта асимметрия оказывается тем сильнее, чем больше различаются энергии взаимодействия атомов АсСпВсСи чем ниже температура. С ростом температуры 8дс убывает и формально при Т->-оо согласно  [c.212]

Подтверждением физического смысла точки пересечения кинетических кривых служит продемонстрированная зависимость показателя степени в уравнении Париса от удельной работы разрушения образцов при монотонном растяжении [57]. В интервале изменения i,5асимметрии цикла О < < 0,5 по 200 экспериментальным данным было получено уравнение типа (4.8) для мартенсито стареющих сталей, нержавеющей стали Х18Н9Т, жаропрочных, строительных и рельсовых сталей. Связь между показателем степени и плотностью (удельная) энергии в интервале 1,5 < < 5,11 имела вид  [c.191]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]

В представленном соотношении указана связь между определяемым фрактографически уровнем эквивалентного напряжения <7 и уровнем одноосного циклического напряжения с нулевой асимметрией цикла через поправочную функцию с параметрами X,. Каждый параметр характеризует условия циклического нагружения элемента конструкции в эксплуатации. Поскольку после разрушения любого элемента конструкции, в том числе и лопаток ГТД, никогда не известны условия его нагружения в полной мере, то всегда определяемая фрактографически величина эквивалентного уровня напряжения не позволяет дать оценку значимости в разрушении того или иного фактора внешнего воздействия. Однако она указывает на интегральную роль условий нагружения на затраты энергии при циклическом нагружении материала в процессе роста трещины.  [c.581]

ВИЯХ МОНОТОННОГО нагружения опре-деляется соотношением N Л Л " при пластической деформации N = = а д, откуда N — adVJdi, где А, а, т параметры, характеризующие объект контроля Уд — объем материала, подвергнутого пластической деформации. Энергия, освобождаемая при дискретном перемещении трещины, пропорциональна квадрату амплитуды акустического сигнала Современная аппаратура позволяет обнаруживать сигналы от уста лостных трещин, развивающихся со скоростью Ш . ..1Сг м/цикл Приведем некоторые результаты исследований, показывающих возможности способа [14]. Исследовали параметры АЭ при по вторпо-статическом нагрул<ении надрезанных образцов из стали марок ЗОХГСА и ЗЙХГСНА при развитии усталости, обусловленной циклическим нагружением. Плоские образцы в закаленном состоянии подвергали циклическому растяжению (коэффициент асимметрии цикла 0,2 частота 0,3 Гц). Регистрировали суммарный счет N, пиковые амплитуды сигналов и их распределение. Рабочая полоса пропускания ограничивалась сверху частотами 200. .. 250 кГц при уровне дискриминации 1 В. Резонансная частота пьезопреобразователя /,, 3 == 250 кГц. Деформацию образца измеряли растровым фотоэлектрическим преобразователем с чувствительностью 1 В/мкм.  [c.448]

Непостоянство температуры в цикле проявляется при это.м не только в изменении вида петли гистерезиса (рис. 80), но и в положении ее относительно осей координат. При неизотермическом нагружении петля а—е смещена так, что энергия деформирования в полуциклах растяжения и сжатия различна, и это определяется не только эффектом Баушингера (как это имеет место при изотермическом нагружении), но и разными механическими свойствами материала при различных значениях температуры. Следствием этого является различие в величинах повреждаемости, накапливаемой в четных и нечетных полуциклах. Обычно при жестком нагружении термическими напряжениями основная доля повреждаемости накапливается при t=iш sL, т. е. в нечетных полуциклах (при действии сжимающих напряжений). Создается асимметрия цикла по товреждаемости это приводит к наличию максимума по оси N для зависимости а —N  [c.140]

Следует ожидать, что эта функция имеет минимум в области некоторого значения От, которое можно назвать оптимальным. При жестком нагружении происходит процесс перераспределения долей энергии между четными и нечетными полуциклами, результатом чего является изменение асимметрии цикла нагружения вследствие приспособляемости системы. Разная степень жесткости нагружения, задаваемая в начале эксперимента, обусловливает и изменение значений Отах, сгтш, Ас. От этого зависят скорость процесса стабилизации и возможность достижения такого состояния, при котором доли повреждения в обеих частях цикла будут равны, что, по-видимому, соответствует минимуму общего П01вреждения за цикл [24].  [c.141]


В обычном поршневом двигателе возвратно-поступательное движение поршня преобразуется во вращательное движение приводного вала посредством кривошипно-шатунного механизма, связанного с колеичаты.м валом. При этом неизбежны потери энергии на трение поверхностей в многочисленных подшипниках. Более того, из-за асимметрии движения поршней серьезной проблемой являются вибрации, из-за которых корпус и опоры двигателя должны обладать большой массой и жесткостью. Поиски лучших решений начались практиче-  [c.69]

Распространение возникших сейсмических волн в значительной степени зависит от характера окружающих пород. Опыт показал, что в некоторох геологических условиях сейсмическая ударная волна относительно однообразно распространяется по всем радиальным направлениям, в других условиях, наоборот, заметна тенденция фокусировки сейсмической энергии в определенном направлении. В результате создается ясно выраженная асимметрия в амплитуде сейсмического толчка.  [c.101]

У рабочих лопаток на напряжении от центробежных сил накладываются знакопеременные напряжения изгиба. Вопросу нлняния степени асимметрии цикла на рассеяние энергии колебаний носвяш,еи ряд работ. Е, С. Сорокин [77] выполнил первое исследование в этой области. Основная идея заключалась в том, чтобы получить семейство зависимостей  [c.107]

А. электронов и позитронов может происходить ц через виртуальный 2 -боэон. Интерференция слабого и ял.-магн. взаимодействий вызывает нарушение пространств. чётности в этих процессах (проявляющееся, напр., в асимметрии углового распределения пар или адронных струй). При энергии в системе центра инерции пары е+е , равной массе (в энергетич. еди-  [c.85]

Предполагается, что делящееся ядро на вершинах барьеров А и В имеет разные переходные состояния, свойства к-рых обусловлены формой ядра. На барьере А ядро не обладает аксиальной симметрией, т. е. величина К не сохраняется, но зато есть зеркальная симметрия относительно плоскости, перпендикулярной паиб. оси ядра. На барьере В ядро имеет аксиальную симметрию, так что К сохраняется, но наруиюна зеркальная симметрия (грушевидная форма ядра). Здесь уже существует асимметрия ыасс будущих осколков. Поэтому на барьере В состояния ядра с разной чётностью имеют разную энергию. Эти особенности формы ядра иа вершине барьеров Л и В играют важную роль при теоретич. описании угл. распределений осколков деления 6]. Характер зависимости сечения деления от энергпи  [c.580]

Распределение осколков деления по массам. Оси. типом деления является деление на 2 осколка. Наиб, характерная его особенность при небольшой энергии возбуждения — асимметрия распределения осколков по массе. Для деления отношение ср. масс тяжёлого и лёгкого осколков 1,5. В этом случае распределение осколков но массам имеет двугорбый вид (рис. 7). С увеличением энергии воз-буждет1Я возрастает ве-  [c.580]

К. в. я. играют важную роль в таких коллективных процессах, как деление или слияние ядер, где диссипация энергии осн. движения идёт через возбуждение колебат. мод промежуточной двухцентровой системы. Для деления ядер важно наличие октунольных мод вблизи седловои точки, влияющих на угл. распределение и массовую асимметрию осколков. Тонкие детали процесса деления определяются квазистацио-нарными колебат. уровнями во втором потенц. минимуме, существующем на стадии сильного растяжения ядра. Есть указания на колебат. движение в возбуждённых (нагретых) ядрах и в быстро вращающихся ядрах.  [c.409]

Для К. э. при высоких энергиях характерна острая направленность рассеянного излучения но направлению первичного фотона с ростом энергии фотонов эта угл. асимметрия увеличивается. Полное эфф. сечение комптоновского рассеяния (полученное интегрированием по углам ф-лы Клейна — Нишины) надает с увеличением е рис. 2).  [c.431]

МАРС — четвёртая по порядку от Солнца большая планета Солнечной системы. Ср. расстояние от Солнца 1,524 а. е. (227,9 млн. км). Эксцентриситет орбиты 0,0934, наклон плоскости орбиты к эклиптике 1° 51 экватор М. наклонён к плоскости его орбиты на 25,2°, что вызывает сезонные изменения на планете. Период обращения М. вокруг Солнца 686,98 сут (сидерический период обращения). Ср. скорость движения на орбите 24,13 км/с. Экваториальный радиус 3394 км, полярный — 3376,4 км, динамич. полярное сжатие яг 1/200. Найдена значит, асимметрия М. вдоль полярной оси уровень поверхности почти во всём южном полушарии лежит на 3—4 км выше, чем в северном. Период вращения М. вокруг своей оси 24 ч 37 мин 22,58 с. Расстояние в перигелии 207 млн. км, в афелии 249 млн. км. Кол-во солнечной энергии, подучаемой М. при наиб, и яаим, расстояниях от Солнца, различается на 20— 30%. Масса М. 6,44-10 кг (0,108 земной), ср. плотность 3950 кг/м , ускорение свободного падения на экваторе 3,76 м/с , первая космическая скорость 3,6 км/с, вторая — 5 км/с. Болометрич. сферич. альбедо 0,20 0,05 ср. эффективная темп-ра поверхности 216 К.  [c.48]

Здесь К — коаф. внутренней конверсии. Величина 7 (1 К) определяет вероятность того, что поглотившее у-квант ядро перейдёт затем в осн. состояние, передав энергию атомарным электронам. Коаф. появляется как следствие квантовомеханич. эффекта — интерференции резонансного и нерезонансного (фотоэффект) процессов поглощения, имеет заметную величину лишь для переходов мультипольности Е1. Линии поглощения у-квантов в переходах Е1 имеют ярко выраженную асимметрию (рис. 6). Для переходов др. мульти-польности коэф. I пренебрежимо мал и энергетич. зависимость сечения поглощения имеет лоренцеву форму, В твёрдом теле возможно упругое резонансное рассеяние у-кантов на ядрах, при к-ром энергии рассеянных (< ) и падающих (1 ) у-квантов строго равны. Сечение такого процесса Оупр пропорц. произведению ве-  [c.102]

Здесь — p. время жизни мюона, а — экспериментально определяемый коаф. асимметрии, величина P(t) определяется временной зависимостью ср. значения распределения проекции мюонных спинов на ось детектора позитронов. Выражение (1) является следствием V — А теории слабого взаимодействия, определяющей энергетич. и угл. распределения позитронов ja е-распада. Среднее по энергии позитронов значение коэф. асимметрии а в соответствии с V — А теорией равняется Однако в действительности знак и величина а определяются особенностями формирования пучков мюонов, энергетич. порогом регистрации позитронов и геометрией позитронного телескопа детекторы Дз. ДД.  [c.227]

Асимметрия вылета е"(е+) относительно спина М., согласно (3), зависит от их энергии. В области высоких энергий (е 1) угл. распределение определяется фактором (1 os ), в то время как для низких энергий (е ) —фактором (1 V3 0S ). Т. о,, асимметрия имеет разный знак для высоко- и низкоэнергетич. областей спектра. Усреднение (3) по спектру даёт  [c.232]

Взаимодействие Н. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит, усилению эффектов несохранения чётности в ядрах. Один из таких эффектов — относит, разность сечения поглощения Н. с поляризацией по направлению распространения и против него, к-рая в случае ядра равна 7% при /ц = 1,33 эВ, соответствующей д-волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компауед-ядра, обеспечивающей на 2—3 порядка большее смешивание компонент с разной чётностью, чем у низколежащих состояний ядер. В результате ряд эффектов асимметрия испускания у-квантов относительно спина захватываемого поляризов. Н. в реакции (п, у), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (п, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (п, ). Асимметрии имеют величину 10" —10 при энергии тепловых Н. В р-волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого комдаунд-состояния (из-за малой нейтронной ширины 2оЭ  [c.269]

Однако в горячих и плотных центр, ядрах звёзд, заканчивающих свою эволюцию, и особенно при вспышках сверхновых звёзд, темп-ра оказывается столь высокой, что нельзя пренебречь изменением энергии фотонов при рассеянии и асимметрией индикатрисы рассеяния, к рая уже при hv 0,1 показывает замет-нуго вытянутость вперёд, и поэтому ( os9) > 0. В таких условиях сечение рассеяния описывается общей Клейна — Вишины формулой, а сам процесс паз. комптоновским рассеянием. Бели плотность звё.здного вещества не очень велика и электронный газ невырожден, то при темп-ре (1—2) 10 К появляется значит, число электронно-позитронных пар, и под Пе в (6) нужно понимать суммарное число электронов и позитронов в единице объёма. Кроме того, помимо рассеяния становится существенным процесс рождения электронно-позитронных пар при взаимодействии фотонов в основном с эл.-магн. (кулоновским) полем атомных ядер.  [c.326]


Смотреть страницы где упоминается термин Энергия асимметрии : [c.223]    [c.119]    [c.332]    [c.681]    [c.448]    [c.619]   
Ядра, частицы, ядерные реакторы (1989) -- [ c.81 ]



ПОИСК



Асимметрия



© 2025 Mash-xxl.info Реклама на сайте