Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория возмущений асимптотическая классическая

В 8.01 ч. IV дано определение ранга и класса возмущений. Пуанкаре установил две теоремы о ранге и классе возмущений произвольного порядка в классической теории возмущений. Эти теоремы, по существу, указывают на асимптотический характер рядов теории возмущений не только в первом приближении. Они могут быть с успехом применены для оценки промежутка времени, на котором теория обеспечивает заданную точность при условии, что в рядах сохранено заданное число членов.  [c.825]


Если действительная траектория регулярна, то, казалось бы, можно надеяться получить решение в виде равномерно сходящегося ряда. Однако описываемые в этой главе классические ряды, будучи весьма полезными при некоторых теоретических вычислениях, оказываются расходящимися. В классических методах амплитуда и частота колебаний представляются рядами по степеням 8 при фиксированных начальных условиях. Поскольку резонансы распределены в пространстве частот всюду плотно, то по мере изменения частоты в высших порядках теории возмущений в дело вступают все новые и новые резонансы. Это обстоятельство приводит к расходимости рядов, которые в лучшем случае оказываются асимптотическими.  [c.82]

В работах [18—19] для этого течения найдено асимптотическое решение уравнений Навье — Стокса при Ве -> оо. Это решение по виду существенно отличается от решения, получаемого в классической теории пограничного слоя. Напомним, что в теории пограничного слоя [1] для построения равномерного асимптотического приближения приходится рассматривать две области течения с продольной координатой порядка длины тела. Течение в одной из них (с поперечным размером того же порядка) описывается уравнениями Эйлера, которые при М > 1 относятся к гиперболическому типу. Другая область — вязкий пограничный слой — имеет толщину, в Ве /2 раз меньшую, а соответствующие уравнения относятся к параболическому типу. Таким образом, возможность передачи информации (возмущений) вверх по потоку, которая соответствует полным уравнениям Навье — Стокса, исключена.  [c.242]

С точки зрения исследования распространения волновых процессов одним из существенных качеств применяемой модели динамики сплошной среды является ее гиперболичность, т. е. соответствующие дифференциальные уравнения должны принадлежать к уравнениям так называемого гиперболического типа. Физически это выражает конечность скорости распространения любого возмущения в рассматриваемой среде, что, однако, не всегда принимается во внимание при построении математических аппроксимаций. Это обстоятельство особенно важно для построения упрощенных теорий. Такие приближенные теории строятся обычно как асимптотически вырожденные по параметру (параметрам) или как некоторые аппроксимации точно поставленных задач математической теории упругости. Гиперболические аппроксимации являются, по-видимому, наиболее подходящими. Они, в отличие от параболических аппроксимаций, характеризуют процессы распространения волн с разрывами и поэтому способны описать динамические явления в областях, расположенных ближе к реальным волновым фронтам, предсказываемым трехмерной теорией. Иначе говоря, если рассматривать гиперболические и параболические аппроксимации одного порядка (имеется в виду порядок пространственно-временного дифференциального оператора), то с помощью первых можно построить теории, применимые при более высоких частотах гармонических составляющих [2.54]. Все сказанное относится к модели динамической теории упругости, которая, как известно, является гиперболической, и ее аппроксимациям— теориям стержней, пластин и оболочек. Условию гиперболичности не удовлетворяют классические тео-  [c.6]


Таким образом, в общем случае представление (58) не является классическим степенным рядом по степеням ji. Метод Крылова — Боголюбова предоставляет математику возможность построить теорию возмущений обыкновенных дифференциальных уравнений с помощью неклассических асимптотических пред-ставлепин (61), (62).  [c.32]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Систематическое применение современных асимптотических методов позволило рассмотреть широкий круг задач, которые не поддаются описанию в рамках классической теории пограничного слоя теория отрыва и присоединения пограничного слоя, различные течения с сильным локальным или глобальным взаимодействием пограничного слоя с внешним сверхзвуковым потоком, включающие часто передачу возмущений вверх по потоку, обтекание двумерных или трехмерных малых препятствий, теория сверхкритических и транскритических режимов взаимодействия для двумерных и трехмерных течений и ряд классов других задач, что позволило детально изучить структуру течений, сформулировать новые приближенные законы подобия.  [c.1]

В рамках классической теории пограничного слоя [Prandtl L., 1904] задача об асимптотическом состоянии вязкого течения около твердого тела при больших числах Рейнольдса приводит к исследованию областей внешнего невязкого потока и пограничного слоя. Пограничный слой описывается системой уравнений параболического типа, а внешний поток при сверхзвуковых скоростях — системой гиперболического типа. Решения краевых задач для таких систем обладают тем свойством, что распределение искомых функций в некоторой области пространства определяется краевыми условиями на границе, лежащей вверх по потоку от этой области. Такая ситуация имеет место, например, при обтекании тонкого тела потоком с умеренной сверхзвуковой скоростью или в случае гиперзвукового обтекания, если только взаимодействие пограничного слоя с внешним потоком является слабым. Однако если краевые условия заранее неизвестны и подлежат определению при совместном решении задач для обеих областей, то ситуация будет иной. Это относится, в частности, к течению со свободным взаимодействием в области, расположенной перед точкой отрыва потока [Нейланд В. Я., 1969, а глава 1] или перед донным срезом тела [Матвеева Н.С., Нейланд В.Я., 1967 глава 3], а также к гиперзвуковому обтеканию пластинки конечной длины [Нейланд В. Я., 1970] и течению около треугольного крыла при сильном взаимодействии [Козлова И.Г., Михайлов В.В, 1970]. В таких задачах внешнее течение, а значит, и давление в пограничном слое, определяется распределением толщины вытеснения пограничного слоя, которое выражается интегральным образом через искомые функции этого слоя. Следствием интегро-дифференциального характера задачи является то, что возмущения, задаваемые в плоскости симметрии треугольного крыла, могут распространяться по потоку вплоть до его передних кромок.  [c.187]


Наиболее распространенный подход к исследованию задач оптимального управления, содержащих малые параметры, состоит в применении методов асимптотического разложения решений возмущенных дифференциальных уравнений к краевой задаче принципа максимума (см., например, [11, 36, 72, 77, 82, 97, 98, 127, 129]). Такая методика позволяет строить асимптотику решения задач с открытой областью управления и гладкими управляющими воздействиями, т. е, задач классического вариационного типа. В задачах современной теории оптимального управления, имеющих прямые ограничения на значения управляющих воздействий в виде замкнутых неравенств, реализация указанного подхода встречает серьезные трудности, поскольку динамические уравнения краевой задачи принципа максимума не обладают необходимой для применения асимптотических методов гл остью. Наверное, поэтому в данном случае исследования, в основном, сводились лишь к выяснению вопроса о предельной задаче, к решению которой в той или иной топологии сходится решение возмущенной задачи при стремлении малого параметра к нулю. Что касается построения асимптотики решения в задачах с замкнутыми множествами допустимых значений управляющих воздействий, то имеющиеся здесь результаты еще далеки от того уровня, который мог бы удовлетворить запросы практики. В первую очередь, это относится к нелинейным сингулярно возмущенным задачам, для которых вопрос о построении асимптотических приближений к оптимальным управлениям за редкими исключениями остается открытым.  [c.7]

Аналитическую теорию движения спутника с учетом величин второго порядка малости можно найти, например, в работах М. Д. Кислика [5] и А. Страбла [17]. В обшем подходе к описанию возмущенного движения спутника А. Страбл следует, по существу, идее Ганзена разложения движения, хотя вывод уравнений движения им получен новым пзггем и в иной форме. Он при интегрировании уравнений применяет методы теории нелинейных колебаний, в частности метод асимптотической теории Н. М. Крылова— Н. Н. Боголюбова — Ю. Д. Митропольского [1, 7 им получен ряд интересных результатов. А. Страбл в своей работе не придерживается общепринятых в небесной механике классических определений, что, как нам кажется, не является вполне оправданным. Совершенно иначе подошел к задаче М. Д. Кислик. Положение спутника относительно основной системы он определяет эллиптическими координатами, а уравнения движения записывает в канонической форме интегрирование уравнений он проводит классическим методом Гамильтона — Якоби. Известно, что в большинстве случаев в задачах небесной механики уравнение Гамильтона — Якоби не интегрируется в квадратурах М. Д. Кислик, оставаясь в пределах точности до второго порядка малости включительно, преобразовал выражение земного потенциала и разрешил уравнение Гамильтона Якоби в квадратурах.  [c.10]


Смотреть страницы где упоминается термин Теория возмущений асимптотическая классическая : [c.7]    [c.129]    [c.487]    [c.54]    [c.377]    [c.54]    [c.152]   
Регулярная и стохастическая динамика (0) -- [ c.89 ]



ПОИСК



Возмущение

Газ классический

Классическая теория возмущений

Ряд асимптотический

Теория возмущений

Теория возмущений асимптотическая

Теория классическая



© 2025 Mash-xxl.info Реклама на сайте