Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематика жидкости н газа

Кинематика жидкости — один из важнейших разделов аэромеханики. Решение основной задачи аэродинамических исследований, связанной с нахождением в каждой точке потока параметров, определяющих движение жидкости (давление, плотность, температура и др.), можно свести при определенных условиях к нахождению поля скоростей, т. е. к решению кинематической задачи. По известному распределению скоростей можно вычислить остальные параметры течения, суммарное силовое воздействие, а также определить теплообмен между телом и омывающим газом.  [c.39]


Механика жидкостей и газов, так же как и другие области механики, разделяется на статику, кинематику и динамику. Часть гидромеханики, изучающая условия равновесия жидкостей и газов, называется гидростатикой. Кинематика жидкостей и газов изучает их движение во времени, не интересуясь причинами, вызывающими это движение. Предметом изучения гидродинамики являются движения жидкостей и газов в связи с их взаимодействием.  [c.5]

Часть механики, в которой рассматриваются общие свойства движения тел без выяснения причин его возникновения, называется кинематикой. В кинематике жидкостей и газов изучается 3  [c.35]

Кинематика жидкости и газа  [c.66]

Кинематика жидкости н газа 66 Конфузор 208  [c.408]

Кинематика жидкости является разделом механики жидкости и газа, в котором жидкость изучается вне зависимости от действующих сил Кинематика устанавливает связь между геометрическими характеристиками движения и временем.  [c.22]

Общий характер движения жидкой среды, благодаря ее текучести, значительно сложнее, чем в случае твердого тела. Под скоростью в кинематике жидкости и газа понимают скорость некоторой точки элементарной жидкой частицы. Так как в математической модели жидкости - сплошной среде - от жидкой частицы в пределе переходят к точке, то местоположение этой точки внутри жидкой частицы несущественно. Экспериментальное наблюдение за аналогом модели жидкой частицы осушествляется посредством введения в поток краски с плотностью, мало отличающейся от плотности жидкости. Наблюдения показывают, что в природе и в технике наблюдается два вида, два режима течения слоистое, или ламинарное и турбулентное, или неупорядоченное.  [c.22]

Кинематика жидкостей и газов.  [c.66]

КИНЕМАТИКА ЖИДКОСТЕЙ И ГАЗОВ  [c.68]

Кроме уже упомянутого ранее основного свойства принятой модели жидкой и газообразной среды — ее сплошности (непрерывности распределения массы и физико-механических характеристик среды), —лежащего в основе кинематики жидкости и газа, для динамики существенно второе основное свойство жидкой или газообразной среды — ее легкая подвижность или текучесть, — выражающееся в том, что для большинства жидкостей касательные напряжения (внутреннее трение) в среде отличны от нуля только при наличии относительного движения сдвига между слоями среды. При относительном покое внутреннее трение отсутствует. В этом заключается отличие жидкой или газообразной среды, например, от упругой среды, в которой касательные напряжения, обусловленные наличием деформаций (а не скоростей деформаций) сдвига, отличны от нуля и при относительном покое среды.  [c.12]


Таким образом, в настоящее время изучение специальной дисциплины Механика жидкости и газа студенту приходится начинать фактически с нуля. С учетом этого обстоятельства данная книга начинается с введения, в котором обсуждаются основные понятия механики жидкости. Первые три главы посвящены изложению кинематики жидкости,  [c.7]

Таким образом, работа 1 кг газа на колесе определяется кинематикой потока и угловой скоростью колеса, но не зависит от температуры и давления газа (жидкости) перед колесом. Выше было показано, что работа колеса пропорциональна разности полных теплосодержаний за и перед колесом .  [c.46]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

В отличие от теоретической механики, в которой изучается движение абсолютно твердого тела, а также движение отдельной точки или системы точек с фиксированным расстоянием между ними, в кинематике сплошных сред изучается движение деформируемых тел. В процессе движения таких тел изменяется первоначальная их форма и расстояние между двумя любыми частицами. Деформируемость является главной кинематической особенностью сплошных сред вообще и жидкостей и газов в частности.  [c.36]

Рассматриваемые здесь понятия и законы кинематики относятся не только к жидкостям и газам, но и ко всем сплошным или деформируемым средам. Таким образом, кинематика сплошных сред изучает геометрию движения жидких, газообразных и деформируемых твердых тел, имеюш,их одно общее свойство — сплошность, или непрерывность, среды.  [c.36]

Глава 2. ОСНОВЫ КИНЕМАТИКИ И ДИНАМИКИ ЖИДКОСТИ И ГАЗА  [c.66]

Процессы, происходящие в компрессорах с впрыском воды, еще не могут быть полностью описаны аналитическими методами. К трудностям можно отнести поведение (кинематику) двухфазной смеси в ходе сжатия при диффузорном течении, неравномерность испарения капель жидкости в быстрых процессах сжатия, сепарацию (налипание на стенках проточной части) капель из двухфазного потока, время испарения капель и т. д. Поэтому необходимы экспериментальные исследования для определения реальной эффективности работы компрессоров с впрыском жидкости и получения их характеристик при разных расходах жидкости, впрыскиваемой в поток газа на входе и в ступенях компрессора.  [c.56]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики.  [c.186]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики. Общие законы и уравнения статики и динамики жидкостей и газов. Силы, действующие в жидкостях. Абсолютный и относительный покой (равновесие) жидких сред. Модель идеальной (невязкой) жидкости. Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.  [c.187]

Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]


Механика состоит из следующих частей механика материальной точки, механика системы точек, механика твердого тела, механика жидкостей и газов. Каждая такая часть, в свою очередь, состоит из трех разделов кинематики, динамики и статики. Кроме того, особым разделом (в силу его важности) выделяют учение о колебаниях и волнах.  [c.6]

Первые три главы курса посвящены изложению общих положений кинематики, статики и динамики жидкостей и газов, установлению основных уравнений, формулировке главнейших законов и теорем. Стремление к максимальному приближению к процессам, происходящим при движениях с большими скоростями, заставляет тесно связывать динамические явления с термодинамическим балансом энергии в них.  [c.11]

При отсутствии касательных сил трения, два параллельно движущихся слоя идеальной жидкости могли бы иметь совершенно произвольные скорости, свободно скользить друг относительно друга. Этот факт находится в явном противоречии с принципом непрерывности поля скоростей, положенным ранее в основу кинематики и динамики жидкости и газа. Можно было бы ожидать при этом, что схема идеальной жидкости должна привести к результатам, далеким от реальности, бесполезным для практики. Однако это не так. Теория идеальной жидкости в большинстве случаев с достаточной для практики точностью описывает обтекание тел, оценивает распределение давлений по поверхности обтекаемых тел, дает суммарную силу давления потока на тело и мн. др. Причиной достаточного совпадения с опытом столь, па первый взгляд, отвлеченной, идеализированной схемы служит дополнительное допущение о сохранении и для идеальной жидкости принципа непрерывности распределения механических и термодинамических величин в движущейся среде. В этом фундаментальном принципе механики сплошной среды заложена главная качественная сторона физического механизма молекулярного обмена в жидкостях и газах, приводящего, с одной стороны, к непрерывности полей физических величин и, с другой, к наличию трения и теплопроводности.  [c.124]

Следует отметить, что описание движения сплошной среды с помощью функции Г =Г( , Го), когда частицы могут перемещаться на сколь угодно большие расстояния, относится к таким средам, как жидкости и газы. Деформируемые твердые тела разрушаются уже при малых смещениях частиц, и для их кинематики характерны поля смещений, малых по величине.  [c.36]

В третьем издании введение и первые семь глав курса, содержащие по преимуществу основные, классические вопросы механики жидкости и газа (кинематика, общие уравнения и теоремы динамики, одномерный газовый поток, плоское и пространственное безвихревые движения несжимаемой жидкости и идеального газа), подверглись, главным образом, методической переработке и получили, сравнительно с другими главами, лишь незначительные дополнения (теория сверхзвукового диффузора, одномерные волны в газе, теория решеток произвольного профиля, законы подобия плоских пространственных тонких тел, теория конического скачка).  [c.2]

Основные параметры лопаточных машин и кинематика потока в решетках. Количество компонента или газа, проходящего через лопаточную машину в единицу времени, называют расходом или производительностью (последнее только для насосов). Будем обозначать расход в единицах массы т (кг/с) или в объемных единицах V (м /с), тогда т= Кр, где р—плотность жидкости (кг/м ).  [c.144]

При изучении кинематики и динамики жидкостей и газов в пористой среде в современной теории фильтрации традиционен уровень рассмотрения, оперирующий с такими статистическими понятиями, как скорость фильтрации, среднее давление и т. д. При этом остаются вне рассмотрения чрезвычайно нерегулярные характеристики движения жидких частиц в индивидуальных поровых каналах. Под частицей при таком уровне усреднения следует подразумевать достаточно большую часть порового пространства, занятого жидкостью. Перемещение таких частиц в пространстве, вообще говоря, сопровождается и их вращением. Следует ожидать, что механизм вращения жидких частиц в существенной степени определяет характеристики переноса примеси, транспортируемой потоком, и, следовательно, представляет интерес изучение вихря поля скорости фильтрации.  [c.99]

Настоящая книга написана в соответствии с программой, утвержденной Минвузом СССР, и предназначена в качестве учебника для студентов вузов горных специальностей. Она является переработанным и дополненным переизданием учебника Гидравлика и гидропривод этих же авторов, вышедшего в 1970 г. По сравнению с первым изданием здесь более полно, с использованием новых данных рассмотрены вопросы механики газов, кинематики жидкости, подобия потоков, теории и эксплуатации гидропневмоприводов.  [c.6]

КИЛОПОНД, см. Килограм.ч-сила. КИНЕМАТИКА (от греч. ктёша, род. п. к1пёта1о8 — движение), раздел механики, посвящённый изучению геом. св-в движений тел, бе учёта их масс и действующих на них сил. Методы и зависимости, устанавливаемые в К., используются при кинематич. исследованиях движений, частности при расчётах передач движений в разл. механизмах, машинах и др., а также при решении задач динамики. В зависимости от св-в изучаемого объекта К. разделяют на К. точки, К. ТВ. тела и К. непрерывной изменяемой среды (деформируемого ТВ. тела, жидкости, газа).  [c.281]

Сплошная изменяемая среда это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тв. тела, жидкости, газа) можно пренебречь мол. структурой среды. При изучении сплошных сред прибегают к след, абстракциям, отражающим при данных условиях наиболее существ, св-ва соответствующих реальных тел идеально упругое тело, пластич. тело идеальная жидкость, вязкая жидкость, идеальный газ и др. В соответствии с этим М. разделяют на М. матер. точки, М. системы матер, точек, М. абсолютно ТВ. тела и М. сплошной среды. Последняя в свою очередь подразделяется на теорию упругости, теорию пластичности, гидродинамику, аэродинамику, газовую динамику и др. в каждом из этих подразделов в соответствии с хар-ром решаемых задач выделяют статику — учение о равновесии тел под действием сил, кинематику — учение о геом. св-вах движения тел и динамику — учение  [c.414]


Приступая к решению задач механики, необходимо прежде всего рассмотреть методы описания движений. Раздел механики, в котором рассматриваются только методы описания движений, но не ставятся вопросы о законах движения, называется кинематикой. Законы дви-же1шя и их применение к отдельным конкретным задачам изучает динамика. Динамика в виде частного случая включает в себя статику, изучающую условия, при которых тела остаются в покое. В зависимости от свойств тел, движение которых изучается, характера изучаемых движений и содержания вопросов, на которые должен быть получен ответ, механика делится на механику точки, механику твердых (недеформируемых) тел и механику упругих тел (последняя включает в себя механику жидкостей и газов).  [c.12]

Изложены основные вопросы технической механики жидкости и газа. Приведены физические свойства жидкостей и газа. Освещены законы равновесия, основы кинематики и динамики жидкости и газа, гидравлические сопротивления. Рассмотрено движение по трубопроводам и истечение через отверстия и насадки жидкости и газа. Описано обтекание твердых тел потоком жидкости и газа. Даны основы моделирования гидроаэродииамических явлений.  [c.2]

Во второй части излагаются кинематика и теория деформаций сплошной среды в эйлеровом и лагранжевом описаниях, формулируются основные законы динамики и термодинамики, выводятся дифференциальные уравнения движения среды, обсуждаются возможные типы начальных и граничных условий. Рассмотрены вариационные принципы в механике жидкости и газа и в теории упругости, методы теории размерностей и подобия. Теоретический материал сопровождается под-боркой задач с решениями в конце каждого параграфа. Приведены также сведения об ученых, создававших механику сплошной среды.  [c.3]

Каждый из этих способов описания кинематики среды обладает опре деленными преимуществами и применяется в механике сплошной среды Связь между ними известна и определяется предположениями о непрерыв ности и взаимной однозначности выражений (1.36) и (1,37). В теории упру гости вообще предпочтительным является лагранжево описание, в меха нике жидкости и газа — эйлерово описание, К сказанному следует добавить  [c.34]

В кинематике используется лишь одно свойство, общее для всех жидкостей и газов и присущее всякой сплошной среде это — непрерывность распределения кинематических элементов в пространстве и диф-ференцируемость их в пространстве и времени все, что будет изложено в настоящей главе, применимо для любой сплошной среды.  [c.55]

При изучении любого курса, в том числе и аэролниачики, главным является глубокое усвоение его важнейших теоретических основ, без чего невозможны творческое решение практических задач, научные поиски и открытия. Поэтому особое внимание должно быть уделено ознакомлению с материалами первых пяти глав книги, в которых излагаются основные понятия и определения аэродинамики кинематика жидкой среды основы динамики жидкости и газа теория скачков уплотнения метод характеристик, наиболее широко используемый при исследовании сверхзвуковых течений. К числу фундаментальных следует отнести материалы, отиоснщиеся к обтеканию профилей крыльев (гл. VI, П), которые дают достаточно полное представление об обще теории движения газа в двухмерном пространстве (теория так называемых двухмерных движений). Непосредственно с этими материалами связана научная информация о свер.хзвуковом обтекании крыла, завершающая первую часть кинги (гл. У1П). Результаты исследо-  [c.3]


Смотреть страницы где упоминается термин Кинематика жидкости н газа : [c.127]    [c.385]    [c.219]    [c.292]    [c.23]    [c.2]    [c.36]    [c.470]   
Гидравлика и аэродинамика (1987) -- [ c.66 ]



ПОИСК



Кинематика

Кинематика жидкости

Основы кинематики и динамики жидкости и газа



© 2025 Mash-xxl.info Реклама на сайте