Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение прочности и пластичности сварных

Химическую стойкость сварных соединений проверяют при определении прочности и пластичности сварных образцов, прошедших обработку в условиях химических или газовых сред. Сравнительные механические испытания образцов, сохранившихся после сварки в обычных условиях, и образцов, выдержанных в коррозионных средах различное время, показывают как изменилась прочность и пластичность сварных швов в результате химического воздействия.  [c.217]


ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ И ПЛАСТИЧНОСТИ СВАРНЫХ СОЕДИНЕНИЯ  [c.107]

Определение прочности и пластичности сварных соединений  [c.107]

Ряд исследований проведен по определению прочности и пластичности элементов при двухосных напряжениях в МВТУ им. Баумана на специальных установках (рис. 16). Установлены важнейшие зависимости конструктивной прочности не только от формы оболочек (цилиндрических, сферических и т. д.) и величин концентраторов, но также от характера кривой диаграммы деформаций на участке предел прочности — сопротивление разрыву. Чем круче поднимается кривая деформаций, тем выше конструктивная прочность элементов при двухосных напряжениях. Напротив, чем ближе отношение От/ов к единице, тем хуже работает элемент в условиях двухосного поля напряжений и тем опаснее для него наличие концентраторов напряжений. В ближайшем будущем будут проведены испытания сварных изделий всевозможных форм, работающих при статических, повторно статических и усталостных нагрузках. Исследование конструктивной прочности под углом зрения хрупких разрушений является одним из важнейших критериев, обеспечивающих надежность работы сварных конструкций в эксплуатации. Чрезвычайно важно при изготовлении сварных конструкций устранить возникновение в них не  [c.139]

К разрушающим методам относятся механические испытания, технологические пробы, металлографические исследования, химический анализ, коррозионные испытания, испытания на свариваемость. Прочность и пластичность сварных соединений проверяют при помощи механических испытаний специально изготовленных образцов. Пе ГОСТу предусмотрены следующие виды механических испытаний испытание металла шва на растяжение на образцах Гагарина (рис. 203,а) испытание сварного соединения на растяжение (рис. 203, б) испытание металла шва й зоны термического влияния на ударный изгиб (рис. 203,в) испытание сварного соединения на изгиб (рис. 203, г) определение твердости.  [c.437]

Испытания для определения прочности и пластичности материала выполняют при "комнатной температуре и температурах, предусмотренных техническими условиями эксплуатации.. При этом определяют предел прочности (временное сопротивление), предел текучести, относительное удлинение и относительное сужение основного металла и сварных соединений. При испытаниях соединений, выполненных точечной контактной сваркой,  [c.99]


Для определения прочности и пластичности металла шва и сварного соединения применяют комплекс испытаний, в том числе при статических и ударных нагрузках. Испытания механических свойств металла шва и сварного соединения при статических и ударных нагрузках (ГОСТ 6996—66) проводят при текущем контроле качества продукции и при исследовательских работах. Аналогичные испытания механических свойств сварных соединений проводят и в большинстве зарубежных стран.  [c.158]

Для определения прочности и пластичности металла шва и сварного соединения применяют комплекс испытаний, в том числе при статических и ударных нагрузках.  [c.96]

Механические испытания металла шва и сварного соединения производятся для определения их прочности и пластичности.  [c.241]

Механические испытания металла шва и сварного соединения производятся для определения их прочности и пластичности. Обязательными видами испытаний являются  [c.285]

В комплекс основных характеристик, подлежащих определению при оценке свойств жаропрочности сварных соединений, так же как и металла конструкций, входят сопротивление ползучести и релаксационная стойкость длительная прочность и пластичность стабильность структуры и свойств в процессе выдержки при рабочей температуре.  [c.109]

В сплавах системы Ti- -А1 предел прочности и пластичность основного материала п сварного соединений зависят от содержания алюминия в сплаве. Так, свойства сварных соединений сплавов, содержащих до 5 — 6% алюминия, находятся на уровне основного материала (сплав ВТ5). В сплавах ВТЗ-1, ВТ8 и ВТ9 содержание алюминия достигает 5,5 — 7%- Увеличение содержания алюминия свыше 7% приводит к падению пластичности (ij)), что связано с образованием при определенных условиях аг-фазы, появление которой в сплаве может привести к охрупчиванию основного материала и сварного соединения.  [c.333]

Создание установок для определенных условий эксплуатации связано с назначением расчетных параметров (например, запасов прочности) и выбором материала. Эта задача может быть решена при наличии соответствующих сведений по механическим свойствам многих материалов и их поведению в условиях эксплуатации (прочность и пластичность, удельная прочность, ударная вязкость, чувствительность к концентрации напряжений, склонность к хрупкому разрушению, прочность сварных соединений и т. п.).  [c.23]

Для определения свойств отдельных локальных участков металла шва и зоны термического влияния испытывают микро--образцы, вырезаемые из исследуемого участка сварного соединения или наплавленного темплета [22]. Такие образцы испытывают на растяжение в специальной испытательной машине с записью кривой усилие—деформация, что позволяет определять прочность и пластичность весьма малых объемов металла исследуемого участка сварного соединения.  [c.100]

Метод оценки критических условий образования холодных трещин [5.3]. Образцы из основного металла электролитическим путем насыщают водородом и непосредственно после насыщения нагревают по циклу околошовной зоны. По достижении комнатной температуры образцы подвергают статическому нагружению и выдерживают в состоянии нагружения длительное время. Определяют прочность и пластичность разрушенных образцов для ряда термических циклов и концентраций водорода. Критическими условиями считают те, при которых разрушающее напряжение ниже, чем у исследуемого материала в состоянии поставки. Параметрами критических условий служат скорость охлаждения при 300° С и концентрация водорода в образце. Метод не позволяет оценить поведение реальных сварных соединений, поскольку в образцах отсутствует литая зона, т. е. не учитывается взаимодействие между наплавленным металлом и металлом околошовной зоны. Помимо этого, представляется весьма спорным определение критических условий образования трещин путем сопоставления свойств материала в состоянии поставки и после обработки по циклу околошовной зоны.  [c.164]


Все строительные стали должны обладать определенными гарантированными характеристиками прочности и пластичности при различных условиях эксплуатации, определенным химическим составом, от которого зависят их свойства, а стали, применяемые для сварных конструкций,— хорошей свариваемостью.  [c.147]

Определение служебных характеристик металла шва и сварного соединения. Для обеспечения нормальной работы конструкции металл шва и сварного соединения должен обладать необходимой и достаточной прочностью и пластичностью, коррозионной стойкостью и другими свойствами. При современном уровне развития сварочной техники это условие удовлетворяется в подавляющем большинстве случаев.  [c.158]

Механические испытания сварных соединений производятся для определения их прочности и пластичности и состоят из испытаний иа растяжение, изгиб и ударную вязкость (пп. 106—107). Они выполняются по контрольным  [c.369]

Механические испытания определяют прочность и надежность работы сварной конструкции. Они разделяются на статические и динамические. К статическим относятся испытания на растяжение (определение прочности) и на изгиб (определение пластичности). К динамическим относятся испытания на ударную вязкость (излом образца ударом) и на усталость (переменной цикличной нагрузкой).  [c.194]

Для практического использования С в расчетах необходимо располагать значениями С . Здесь возможны два пути. Первый заключается в использовании ранее определенных для другого металла значений в функции угла а (рис.8.3.2). Это возможно в тех случаях, когда металл-шва и основной металл по прочности и пластичности мало отличаются друг от друга и не находятся в хрупком состоянии. Если швы более прочны, чем основной металл, то следует найти экспериментальные значения для конкретного сочетания свойств швов и основного металла и пользоваться ими только в отношении этих сварных соединений. Этот путь целесообразен для соединений, выполняемых на серийно вьшускаемой продукции при неизменных свойствах металла и установленной технологии сварки.  [c.282]

В табл. 2 приведены обобщенные данные по жаропрочности (пределу длительной прочности) основного металла, шва и сварного соединения. Как правило, металл шва близок или несколько превышает по уровню длительной прочности основной металл. Сварные соединения малоуглеродистой и хромомолибденовых сталей равнопрочны основному металлу. Сварные соединения хромомолибденованадиевых сталей уступают по уровню длительной прочности основному металлу за счет разупрочнения в участке высокого отпуска зоны термического влияния. Наличие разупрочненных участков может в определенных случаях приводить также к заметному снижению пластичности сварных соединений хромомолибденованадиевых сталей при длительном разрыве.  [c.28]

Если напряжение в конструкции достигнет предела прочности, то произойдет ее разрушение. Например, если внутреннее давление вызовет в трубе напряжение, равное пределу прочности, то труба разорвется. Чтобы металл работал надежно в теплотехнических конструкциях и деталях, кроме определенной прочности, он должен иметь определенный запас пластичности. Детали машин и элементы стальных конструкций имеют сложную форму. Напряжения в них распределяются неравномерно. В местах резких переходов от толстых сечений к тонким, около выточек, галтелей, около буртиков (усилений) и подкладных колец сварных швов, получается концентрация напряжения. Местные напряжения могут быть в несколько раз выше средних. Для пластичного материала это не очень опасно. За счет весьма малых пластических деформаций произойдет перераспределение и выравнивание напряжений без искажения размеров всей детали или элемента конструкции. Если же металл хрупок, то в местах концентрации напряжений могут образоваться трещины. В конечном счете эти трещины могут привести к разрушению всей детали или конструкции.  [c.66]

Дальнейшие работы в области прочности и надежности по критериям сопротивления вязкому и хрупкому разрушению направлены на создание инженерных методов количественной оценки вероятностей разрушения для конструкций, имеющих исходную дефектность, сварные соединения и изготавливаемых из сталей повышенной пластичности. Некоторые из достигнутых результатов этого направления использованы в энергетическом и химическом машиностроении при расчетном определении несущей способности сосу-дов, нагружаемых в эксплуатации внутренним давлением.  [c.68]

Сварные соединения испытывают таким образом на статическое растяжение, статический изгиб (загиб) и ударную вязкость (ударный разрыв). Испытание на статическое растяжение характеризует прочность сварного соединения. Испытание сварного соединения иа статический изгиб служит для определения пластичности сварного соединения. Испытание сварного соединения на ударный разрыв определяет способность сварного соединения противостоять развитию трещин, что особенно важно при эксплуатации сварных конструкций в условиях низких температур.  [c.179]

С увеличением толщины свариваемого металла пластичность сварных соединений уменьшается вследствие неблагоприятных структурных изменений и структурных напряжений в металле шва и околошовной зоны, повышения сварочных напряжений и ухудшения качества основного металла. Эти факторы значительно снижают пластичность сварных соединений при наличии низких температур и резкой концентрации напряжений. Повышение погонной энергии с увеличением толщины свариваемого металла позволяет повысить пластичность металла шва с одновременным снижением его прочности. Влияние скорости охлаждения наиболее резко сказывается при сварке угловых и многослойных стыковых швов, поэтому такие соединения нельзя рекомендовать для ответственных конструкций. Наряду с этим для соединения элементов изделия следует использовать сварные швы, сечение которых находится в определенном соотношении с толщиной металла. При толщине металла 16—24 мм рекомендуется применять шов с сечением не менее 35 мм , при 25—40 и 41—50 мм — соответственно 50 и 60 мм . Скорость охлаждения при этом не должна превышать 30°С в 1 с.  [c.124]


Сталь перед сваркой подвергают термической обработке на высокую прочность (нормализация или закалка с высоким отпуском). После сварки предусматривается отпуск для снятия напряжений и выравнивания механических свойств в различных участках соединений. К сварным соединениям предъявляется требование равнопрочности с основным металлом в сочетании с определенными значениями ударной вязкости, пластичности и ряда специальных свойств, характеризующих работоспособность соединений в соответствующих условиях (например, критическая температура хрупкости и сопротивление хрупкому разрушению в условиях ударных или статических нагрузок при низких температурах пределы длительной прочности и ползучести сопротивление локальному разрушению при повышенных температурах и сложном напряженном состоянии и т. д.).  [c.42]

Горячие и холодные трещины. Оценка свариваемости высокопрочных сталей сводится к определению оптимальных условий сварки, при которых исключается возможность появления в сварном соединении трещин, а метал-околошовной зоны сохраняет требуемые пластичность, прочность и хладостойкость.  [c.12]

В случае опасности разрушения до наступления текучести важным становится определение не только запаса прочности, но и запаса пластичности сварных конструкций, имеющих концентраторы напряжений. Для определения указанного запаса существуют разные пути. Можно рекомендовать метод, разработанный в МВТУ им. Баумана, который в основном состоит в следующем.  [c.91]

Как было отмечено в гл. I, все основные способы сварки выполняются при местном нагреве свариваемого изделия сварочными источниками тепла. От температурного состояния объемов металла в месте сварки и распределения температур в свариваемом изделии в определенной степени зависит качество сварных соединений — прочность, пластичность, ударная вязкость металла шва и прилегающих к месту сварки участков металла, а также в ряде случаев и другие особые свойства металла (сопротивляемость коррозии, жаропрочность и др.).  [c.132]

Более глубокий анализ напряженного состояния, имеющего место в сварных объектах, и определение коэффициентов концентрации напряжений в них осуществляются на базе теории упругости и пластичности. Такие пути определения напряжений бывают необходимы при оценке прочности конструкции под переменными нагрузками, для установления с позиций механики материалов условий распространения возникших в изделиях трещин, а также при учете собственных напряжений, вызванных сварочным процессом.  [c.22]

Степень завершенности процессов, развивающихся при нагреве метастабильного металла, и изменений свойств сварного соединения зависит от состава стали и времени пребывания в диапазоне определенных максимальных температур. Последнее зависит от теплового режима сварки. Кроме того, режим определяет ширину зон, в которых развивается тот или иной процесс, а следовательно, и ширину зон разупрочнения или пониженной пластичности. При применении мощных концентрированных источников теплоты эти зоны могут стать настолько узкими, что не будут оказывать заметного влияния на прочность сварного соединения в целом.  [c.517]

С увеличением содержания ферритной фазы выше определенной нормы резко снижается пластичность сталей при механической обработке, образуются трещины и другие нарушения сплошности. При повышенном содержании ферритной фазы в сварных соединениях резко уменьшается их прочность.  [c.64]

Целью испытаний является определение прочности и пластичности сварных соединений. Однако подобные механические испытания вообще не могут в достаточной мере характеризовать качество сварных соединений и конструкции в целом. Например, испытания на растяжение почти никогда не служат основанием для браковки конструкции. Единственньш поводом для браковки является неудовлетворительный результат испытаний образцов на загиб, т. е. тогда, когда получают меньший угол загиба, чем требуется. Но испытания на загиб не позволяют определить свойства металла сварного соединения, так как они характеризуют лишь соотношение свойств основного и наплавленного металла. Это соотношение зависит, прежде всего, от предела текучести основного металла и металла шва. Уменьшение предела текучести металла шва по сравнению с пределом текучести основного металла всегда сопровождается уменьшением угла загиба, и наоборот. Следовательно, на практике необходимо стремиться к тому, чтобы предел текучести металла шва был бы равен пределу текучести основного металла или несколько вьппе его. Соотношение же свойств основного металла и наплавленного должно определяться в процессе разработки технологии сварки путем выбора и назначения соответствующих сварочных материалов (электродов, сварочной проволоки, флюсов и т. п.). Если эти соотношения установлены, то нет никакой необходимости в последующих механических испытаниях.  [c.146]

Испытания на статическое растяжение. Эти испытания проводят на цилиндрических или плоских образцах, вырезанных из металла шва или сварного соединения. Испытания могут проводиться при нормальной, пониженной и повышенной температурах и служат для определения прочности и пластичности металла шва или сварного соедин-ения.  [c.19]

Развитие техники непрерывно выдвигает перед наукой о прочности конструкционных материалов новые проблемы и задачи. Это обусловлено тем, что общая тенденция в осуществлении технических замыслов и проектов всегда предусматривает использование материалов и сварных соединений с заданными физико-механическими свойствами — прочностью и пластичностью, жаропрочностью и хладностойкостью, трещино-стойкостью (способностью материала тормоЗить распространение в нем трещины), ударной вязкостью, необходимым сопротивлением малоцикловому или многоцикловому разрушению и т. п. Изучение этих свойств является основной частью разработок в области создания новых материалов, совершенствования технологических процессов их производства и обработки, а также в области определения ресурса работы элементов конструкций.  [c.5]

Экспериментальное определение характеристик сопротивления малоцик-ловому деформированию и разрушению. Характеристики сопротивления малоцикловому деформированию и разрушению определяют по результатам серии испытаний образцов конструкционных материалов и металла сварных соединений (ГОСТ 25.502—79 и ГОСТ 25.504—82). Получаемые экспериментальные данные используют для изучения закономерностей малопикло-вого деформирования и разрушения определения расчетных характеристик прочности и пластичности оценки несущей способности элементов конструкций по критериям малоциклового разрушения обоснования выбора материалов конструкций, работающих при малоцикловом нагружении. Малоцикловые испытания образцов, кроме случаев исследования с позиций механики разрушения, проводят до момента образования макротрещины.  [c.114]


Известно, что реальные сплавы (в том числе металл сварных швов) при температурах конца и ниже конца затвердевания обладают в местах стыка кристаллитов (дендритов) весьма низкой прочностью и пластичностью, обусловленной внутрикристаллической (внутридендритной) химической неоднородностью примесей, имеющих более низкую температуру плавления, чем данный сплав. Такими свойствами металл обладает в определенном интервале температур и при значительной ликвации.  [c.75]

К отдельному виду нагружения относят длительно действующие нагрузки в условиях высоких температур. Основным здесь является Шбор металла, обладающего длительной жаропрочностью, и способа сварки, обеспечивающего получение сварных соединений, не уступающих по свойствам основному металлу [92]. Длительное воздействие 1вмпературы или ее изменение во времени по определенному закону, В том числе и без нагрузок, в ряде случаев может вызвать существенные изменения прочности и пластичности под влиянием изменения струк-typHoro состояния.  [c.17]

Четвертый метод расчета сварных соединений с угловыми швами на статическую прочность (см. 8.1) предусматривает учет концен+рации напряжений и деформаций в зависимости от формы и размеров швов. Использование этого метода невозможно, если пользоваться только характеристиками прочности и пластичности, рассмотренными выше. Ввиду недостаточной мощности обычно используемых ЭВМ для одновременного определения в еловых сварных соединениях концешрации напряжений первого и второго вида расчет распадается на две стадии. Первая стадия расчета напряженно-деформированного состояния фактически совпадает с расчетом НДС в третьем методе.  [c.271]

Определение несущей способности сварных конструкций в зависимости от величины напряжений, вызывающих в сечениях текучесть — наиболее распространенный метод в практике проектирования. Критерием являются напряжения, определяемые методами сопроФивления материалов, строительной механики, теорией упругости и пластичности. В случае сложнонапряженного поля расчет прочности производят определением эквивалентных напряжений по одной из теорий прочности.  [c.85]

Методы проверки эксплуатационных характеристик металла шва, околошовной зоны и сварного соединения заключаются в определении прочности, пластичности, коррозионной стойкости, износостойкости и другйх свойств.  [c.482]

Появление трещины в концентраторе. Наиболее распространенной характеристикой оценки прочности металла, сварного соединения или детали в присутствии концентратора является среднее разрушающее напряжение Оср.р, определяемое в случае растяжения и среза отношением разрушающей силы Яр к площади ослабленного сечения или отношением разрушающего момента Мр к моменту сопротивления V при изгибе. Однако оценка свойств только по среднему напряжению часто не обнаруживает отрицательного влияния концентратора, пока он не превысит некоторого значения. Например, испытание стыкового (рис. 3.34, а) или углового (рис. 3.34, б) шва с непроваром до разрушения может давать высокие значения Рр и 0ер.р при небольших размерах непровара и достаточной пластичности металла. При увеличении размера непровара или ухудшении свойств металла среднее разру-ш ающее н ап ря жение о с .р будет уменьшаться. Целесообразно наряду с определением Рр регистрировать пластичность металла или соединения Ар, например, путем записи в процессе испытания перемещения А, т. е. изменения расстояния между точками А и В. На рис. 3.34, в показана диаграмма Р (А). Кривая 1 указывает на большую пластичность соединения, а кривая 2 свидетельствует о малой пластичности. При увеличении толщины металла или непровара при малой пластичности средние разрушающие напряжения могут заметно падать, принимая значения, отмеченные крестиками. Для исключения влияния упругости участка АВ можно из полного перемещения Ар вычесть упругую его составляющую Аупрр и получить пластическую составляющую А = Ар — Ау р.р (рис. 3.34, в).  [c.118]

Во многих случаях неравнопрочность сварных соединений существенно зависит от концентрации напряжений. Это, во-первых, случаи статического нагружения сварных соединений с ограниченной пластичностью металла, вызванной либо хрупким состоянием металла, например, от низких температур, либо высоким уровнем прочности и повьш1енной чувствительностью металла к концентрации напряжений. Во-вторых, это прочность щ)и переменных нафузках, которая в основном зависит от концентрации напряжений. Следует отметить особую роль испытаний для этих случаев, поскольку экспериментальный путь остается практически единственным для ее определения. С появлением численных методов расчета концентрации напряжений роль испытаний как инструмента для получения обобщающих данных возрастает.  [c.34]


Смотреть страницы где упоминается термин Определение прочности и пластичности сварных : [c.2]    [c.353]   
Справочник по специальным работам (1962) -- [ c.0 ]



ПОИСК



Пластичность и прочность

Пластичность сварного шва

Пластичность — Определение

Прочность Определение

Сварные Прочность



© 2025 Mash-xxl.info Реклама на сайте