Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет листовой конструкции

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]


Например, если радиальное биение шпинделя нового шлифовального станка 0,005 мм, а допускаемое биение в конце срока эксплуатации станка 0,01 мм, то 0,01/0,005 = 2. Другим примером может служить расчет для толщины стенки корпуса аппарата листовой конструкции. В процессе работы аппарата появляется коррозионный износ (воздействие на металл агрессивной среды). Величина коррозионного износа зависит от агрессивности среды и химической стойкости материала. Коррозионный износ детали берется равным скорости проникновения коррозии (см. в год), помноженной на продолжительность срока службы I (аппарата). Срок службы I, определяющий долговечность работы аппарата, принимается равным 10 — 12 годам, учитывающим физическое и моральное старение. Скорость проникновения коррозии устанавливается на основании коррозионных испытаний, проводимых в условиях, аналогичных или максимально приближающихся к условиям работы аппарата. Для изготовления аппаратов обычно применяют материалы, у которых = 0,1 - 0,5 см в год. При таких скоростях  [c.39]

Расчет допусков на листовые детали по отклонению размеров сварных карт. Предельные отклонения размеров сварных карт согласуют с допусками листовой конструкции.  [c.173]

Задача моделирования. Контроль отклонений формы цилиндрических корпусов листовых конструкций проводится путем измерений координат поверхности в дискретном наборе точек. Задача моделирования отклонения формы поверхности по измеренному набору координат точек на реальной поверхности и заданным параметрам номинальной поверхности позволяет получить оценку отклонения между ними. Если будет построена модель поверхности, то ее можно использовать для расчета количественных характеристик точности. Построение создания аналитической или алгоритмической модели геометрической формы с заданными характеристиками относится к геометрическому моделированию.  [c.187]

В листовых конструкциях при заготовке деталей назначаются следующие припуски по длине развертки — из расчета 1 мм на каждый поперечный шов по ширине развертки — из расчета 1—2 мм на каждый продольный шов.  [c.133]

Учитывая особенности работы, к листовым конструкциям предъявляются определенные требования швы должны быть прочными и плотными в местах защемлений оболочек (у колец жесткости, у днищ и т. п.) необходимо в расчете учитывать локальные краевые напряжения при проектировании предусматривать фасонный раскрой листового проката, вальцовку обечаек и колец, штамповку выпуклых элементов, правильно располагать люки, лазы, врезки и т. п.  [c.331]


Преимущественная часть работ посвящена исследованию сопротивления усталости круглых образцов при изгибе с вращением. Применительно к крановым металлическим конструкциям эти исследования дают только общие качественные сравнительные данные для оценки различных марок материала, так как для крановых расчетов используются лишь данные, полученные в условиях осевых деформаций. В решетчатых конструкциях, например, элементы работают только на растяжение—сжатие, а в балочных листовых конструкциях градиент изменения напряжений по толщине пояса крановых балок настолько незначителен, что элементы этих конструкций следует рассматривать работающими также в условиях растяжения—сжатия.  [c.381]

В листовых конструкциях припуск назначается по длине развертки — из расчета 1 мм на каждый поперечный шов по ширине развертки — 1—2,5 мм на каждый продольный шов.  [c.262]

Применение сварки в изготовлении подъемно-транспортных машин (ПТМ) привело к заметному изменению геометрических форм конструкций, созданию новых методов расчета как конструкций в целом, так и отдельных сварных элементов и узлов. Широко внедряются конструкции коробчатого, оболочкового и сложных сечений, составленные из листовых элементов. Они оказываются часто экономичнее решетчатых и проще в изготовлении. В решетчатых конструкциях используют замкнутые трубчатые, в том числе гнутые сварные профили, вместо традиционных прокатных швеллеров и углового профиля. Несмотря на многообразие видов подъемнотранспортных машин, работа их металлических конструкций имеет много общего. Это позволяет использовать единые принципы расчета, проектирования и оценки прочности элементов и соединений. Опыт эксплуатации крановых сварных металлоконструкций показывает, что определяющим фактором, от которого зависит их надежность, является выносливость.  [c.235]

ЛИСТОВЫЕ КОНСТРУКЦИИ (РАСЧЕТ И ПРОЕКТИРОВАНИЕ)  [c.514]

Листовые конструкции цистерн применяют в железнодорожном и автомобильном транспорте, для стационарных установок при хранении воды и других жидкостей и т. п. Расчет на прочность цистерн производят аналогично резервуарам при этом определяют напряжения, действующие по касательной к окружности.  [c.529]

Конструкция капсульного агрегата с поворотнолопастным рабочим колесом, разработанного Л М3 для Перепадных ГЭС (см. табл. 1.5), схематично показана на рис. 11.20. Его проточная часть аналогична агрегату Киевской ГЭС. Капсула 1 образована из конических и цилиндрических оболочек и сварена из листовой стали. Опирается капсула на статор турбины 14, вертикальную колонну 17, расположенную в ее головной части, и две поперечные распорки, заменяющие растяжки. Статор имеет восемь радиальных колонн, соединяющих его внутреннее и наружное кольца. Проходы в капсулу предусмотрены через верхнюю часть головной колонны и верхнюю расширенную колонну 4 статора. На основании расчетов на динамические нагрузки толщина стенки капсулы была принята без излишних запасов, что благоприятно сказалось на удельной массе агрегата.  [c.49]

Увеличить жесткость кольцевой рамы без утолщений оболочки у шлюза можно различными конструкционными приемами, выбор которых должен определяться технико-экономическими расчетами. Возможно увеличение сечения рамы посредством установки дополнительных фланцев. В зоне рамы обрамления шлюзов можно сконцентрировать также кольцевую арматуру. Если ее приведенная толщина вместе с толщиной рамы для шлюза диаметром 3 м содержит 15—20 см металла, то это будет примерно равноценно сплошному металлическому обрамлению шлюза с толщиной стенки рамы, равной /20 ее диаметра. Рама может быть изготовлена пустотелой с заполнением свободного пространства бетоном или другим материалом, имеющим высокий модуль упругости (рис. 1.27, а). Можно усилить жесткость рамы установкой кольцевых каркасов, приваркой к ее фланцам дополнительных колец из листового металла и т. д. Пересеченную шлюзом рабочую арматуру можно компенсировать, увеличив сечение торцевых и промежуточных сланцев шлюза. Следует обеспечить надежное соединение ненапрягаемой арматуры оболочки с фланцами рамы. Эффекта можно добиться, обеспечив совместную работу защитной оболочки с металлическими конструкциями самого шлюза.  [c.47]


Целесообразность замены горячекатаного листа холоднокатаным в конструкциях машин объясняется тем, что в процессе холодной прокатки листа улучшаются его механические свойства и повышается точность по допускам. Кроме того, холодной прокаткой можно производить листовую сталь такой толщины, которую не представляется возможным получить при горячей прокатке (можно получить листовую сталь толщиной до 1 мм, тогда как на станах горячей прокатки можно получить лист минимальной толщины 1 —1,2 мм). Вследствие дефицита холоднокатаного лис га конструкторы в ряде случаев вынуждены применять горячекатаную листовую сталь больших толщин, чем необходимо по условиям расчета узлов и деталей, что приводит к перерасходу металла, утяжеляет изделия. Установлено, что применение холоднокатаного листа взамен горячекатаного позволит экономить у потребителя в среднем 20%.  [c.177]

Допускается гибка труб радиусами менее указанных, если способ загиба гарантирует утонение стенки не более 15% толщины стенки, требующейся 1ю расчету. Для труб II а, III и IV- категорий, когда- по конструкции трубопровода и условиям монтажа не представляется возможным применять минимальное значение радиуса загиба, а также для труб тех же категорий диаметром более 400 мм разрешается изготовлять колена, отводы и другие части сваренными из отдельных секторов из труб или из листовой стали, а для трубопроводов III и IV категорий допускается изготовление сварных крестовин, развилок и прочих фасонных частей.  [c.98]

Как уже упоминалось, вошедшие в практику современного котлостроения конструкции натрубных обмуровок имеют толщины порядка 100—160 мм и по существу являются газоплотной изоляцией топочных стен, полностью защищенных экранными поверхностями нагрева из плавниковых труб, гладкими трубами с тесным расположением или листовым покрытием. При таких небольших толщинах обмуровки определение температуры на внутренней ее поверхности и правильный расчет в целом являются необходимыми.  [c.38]

Сварные конструкции (стержневые, листовые и оболочечные несущие элементы, подкрановые устройства, трубопроводы, емкости) требуют при оценках их сопротивления деформированию и разрушению учитывать влияние неоднородности механических свойств и дефектности, связанной с широким использованием сварки, развития методов испытаний и расчетов в связи с эффектом абсолютных размеров сечения конструкций и технологической концентрацией напряжений.  [c.5]

При разборке защитного покрытия из листового металла, крепление которого осуществлено самонарезающими винтами, допускается разрезка покрытия вблизи продольного стыка с расчетом вторичного использования элементов покрытия для теплоизоляционной конструкции меньшего диаметра. Покрытия, закрепленные хомутами, должны быть полностью использованы вторично.  [c.434]

Расчет панельного отсека. Сухие отсеки панельной конструкции изготовляют из панелей, получаемых прессованием или механической обработкой толстых листовых заготовок. Панели только с продольны-  [c.323]

Расчеты футеровочных покрытий на прочность, устойчивость, теплотехнический и другие проводят по СНиП 11-22—81 Каменные и армокаменные конструкции. Нормы проектирования , а также [5, 6]. Если в соответствии с расчетом температура на непроницаемом подслое превышает допустимую или максимально допустимая высота футеровки меньше заданной, толщину покрытия следует увеличить. Снижение температурного воздействия на подслой достигается также введением теплоизоляционной химически стойкой прослойки (например, слоя листового асбеста), окрашиванием оборудования снаружи светлой краской, отража-  [c.171]

В четвертом томе изложена методика проектирования технологии штамповки листовых материалов (металлических и неметаллических), классифицированы операции штамповки из листа. Даны рекомендации по применению смазки, оптимизации раскроя. Приводятся данные по определению деформирующих сил, работы деформации и предельного формоизменения за один переход. Уделено внимание проектированию разделительных операций, чистовой вырубке, пробивке и др. Приведены примеры проектирования и расчета технологических процессов. Рассмотрены процессы штамповки на многопозиционных прессах. Представлены типовые конструкции штампов.  [c.8]

Для того чтобы количество материала в балке было минимально, можно изменять поперечное сечение и тем самым попытаться выдержать одинаковое максимальное нормальное напряжение во всех поперечных сечениях. В идеальном случае, когда максимальное нормальное напряжение в каждом поперечном сечении равно допускаемому напряжению, мы имеем так называемую полностью равнопрочную конструкцию. Это широко распространенный критерий при создании конструкций минимального веса. Разумеется, идеальное условие достигается редко, так как практические задачи, возникающие при конструировании балки, и возможности приложения нагрузок отличаются от принимаемых при расчете. Известными примерами конструкций, у которых используются переменные сечения для сохранения максимальных нормальных напряжений постоянными (насколько это осуществимо), являются листовые рессоры автомобилей и мостовые балки, покрытые плитами различной длины.  [c.178]

Экономия материалов — рациональная конструкция изделия, не требующая лишнего материала уменьшение сечений за счет более точного расчета и максимальных допускаемых напряжений и более прочных сортов металла (низколегированных сталей) уменьшение отходов при раскрое металла из листовой и профильной стали использование обрезков на мелкие детали экономное расходование электродов, сварочной проволоки и газов для резки — кислорода, ацетилена и т. д.  [c.237]


К тонкостенным оболочечным конструкциям относится большая группа листовых конструкций, используемых в химической, энергетической, нефтеперерабатываюш ей, газовой, металлургической и смежных отраслях промышленности. Это сосуды и аппараты, газгольдеры и резервуары, бункеры и силосы, магистральные трубопроводы и листовые конструкции доменных комплексов. Обилий объем производства листовых оболочечных конструкций в нашей стране достигает 5—6 млн. т в год, что составляет примерно 55% от веса всех возводимых металлических сооружений. Поэтому уточнение методики расчета таких конструкций и разработка мероприятий по увеличению их долговечности являются важной инженерной проблемой.  [c.135]

Листовые конструкции аппаратурного оформления предназначены для осуществления физико-химических процессов и хранения различных веществ, применяются во многих отраслях промыпшен-ности. Они конструктивно разнообразны, имеют большую массу и габариты, состоят, преимущественно, из комбинации пластин, оболочек, труб разных сечений и очертаний, соединяемых подвижно и неподвижно. Работоспособность на всех стадиях жизненного цикла обеспечивается точностью и взаимозаменяемостью, подгонки исключаются. Конструкции создаются индивидуально на базе модульного проектирования, нормируются номиналы, допуски и методики точностных расчетов. Стандартизованные нормы взаимозаменяемости соединений общего машиностроения не отражают специфику точности листовых конструкций и получили ограниченное распространение.  [c.152]

Сварные сосуды с эллиптическими днищами листовых конструкций емкостного типа часто находятся под внутренним давлением, а это означает, что толщина стенки должна меняться в больших пределах одновременно с повьппением стоимости поверхности. В связи с этим более целесообразно рассматривать удельную стоимость обечайки и днища, отнесенную к единице массы. Для удобства последующего расчета общую массу сосуда, состоящего из цилиндрического корпуса и двух эллиптических днищ, приравниваем к массе эквивалентного цилиндра диаметром Воспользовав-щись исходными параметрами сосуда, найдем объем эквивалентного цилиндра, равного сумме объемов эллиптического днища Уд и исходного цилиндра Уд (рис. 4.1).  [c.153]

Из требований к точности на напряженно-деформированное состояние существенное лияние оказывает смещение кромок стыкуемых деталей (обечайки, днища, листовые плоские детали) и отклонения формы поверхностей при внутреннем давлении на прочность и наружном давлении на устойчивость оболочки. Исследования по расчету напряженно-деформированного состояния корпуса в зависимости от точности по всем стадиям жизненного цикла доггатьт стать неотъемлемой частью комплексного проектирования конструкции, технологии и эксплуатации. Здесь важно учесть различные факторы функционирования листовых конструкций, особенно те, которые могут возникнуть на этапах технологии, эксплуатации и которые не всегда удается предвидеть в процессе конструирования и учесть в обеспечении взаимозаменяемости.  [c.254]

В главе VI рассмотрены примеры расчета машиностроительных конструкций с учетом контактных взаимодействий. Приведены результаты гсследов ний напряженно-деформированного состояния деталей технологической оснастки для холодной листовой штамповки, контактирующих фланцевых и замковых соеди-нений различных типов. Рассмотрена ползучесть составного ротора с учетом изменения зоны контакта во времени, посадка турбинного диска на некруговон вал, контактные задачи для иллюминаторов глубоководных аппаратов.  [c.5]

Расчет многоопорных конструкций двухкривошипных валов ведут по разрезной схеме, рассматривая каждую из двух частей вала как одноколенчатый двухопорный вал. Из-за больших осевых усилий, возникающих на червяке червячной передачи, особое внимание следует уделить выбору его подшипников. Их выбирают по эквивалентной нагрузке. Наиболее рационально применять радиально-упорные подшипники, так как упорные подшипники имеют слишком большие размеры по оси вала. Многие ножницы для листового металла имеют механический привод прижимной балки, а прижимную балку сплошную, жесткую. Жесткая прижимная балка не может обеспечить равномерного распределения усилия прижима по длине балки. В таком приводе наблюдаются частые поломки пружин. Поэтому при модернизации указанного узла рекомендуется использовать отдельно подпружиненные прижимы или применять отдельные гидравлические прижимы. В гидравлическом приводе прижимов наиболее уязвимым местом является втулка ролика поршня насоса. Ролик получает перемещение от кулачка И, расположенного на коленчатом валу (см. рис. 12.2). Допускаемые удельные усилия на контактных поверхностях роликов [ 1 с 150 МПа.  [c.172]

Листовые конструкции цистерн имеют различное назначение для железнодорожного и автомобильного транспортл, для стационарных установок при хранении воды и других жидкостей и т. д. Расчет прочности цистерн производится аналогично резервуарам при этом определяются напряжения, действующие по касательной к окружности.  [c.431]

Материалом для стальных конструкций служит литая сталь, стальные отливки и поковки. Помимо этого применяют специальные стали (никелевую, кремнистую). Различные сорта литой стали имеют следующее применение двутавровая—для всех родов балок ко-рытная (швеллерная)— для стоек и ферменных стержней двутавровая широкополочная— для балок, стоек и ферменных стержней зетовая— для обрешетин и стоек Зоре или Вотере-па—для мостового полотна угловая—для всевозможных соединений, для клепаных балок и ( ерменных стержней тавровая—для ферменных стержней и малых балок круглая—для легких соединений и анкеров полосовая и универсальная— для стенок клепаных балок, поясных листов, стержней ферм. Для фасонок, особенно высоких стенок клепаных балок и вообще там, где является необходимым обеспечение одинаковой прочности материала по всем направлениям, применяют листовую сталь, прокатанную по двум направлениям. Стальное литье идет в дело для опорных подушек и шарниров. Кованая сталь употребляется для шарйирных болтов, опорных цапф и тому подобных сильно напряженных частей. Чугун применяется только для опорных плит и реже для стоек. Для соединения служат стальные заклепки и болты [при слишком большой толщине соединяемых частей (более 4 2 диаметров отверстий) конич. болты], для шарниров—особые шарнирные болты. В последнее время прибегают к сварным соединениям, особенно пригодным для работ по усилению С. к. При расчетах инженерных конструкций надлежит руководствоваться соответствующими нормами нагрузок и допускаемых напряжений.  [c.421]

В IV разделе излагаются данные по листовым кон- трукциям и содержатся необходимые сведения по расчету оболочек и учету краевого эффекта. В этом разделе уделено внимание. новейшим конструкциям и дальнейшему их совершенствованию (доменные печи 2000 и 2700 сухой газгольдер переменного объема с гибкой связью поршня с корпусом и др.), а также передовым методом изготовления и монтажа-листовых конструкций . (применение рулонирования, автоматической сварки под слоем флюса, сварки в защитной газовой среде, элект-рошлаковой сварки и др.). i  [c.14]


Определение потери давления на единицу длины в воздуховодах сложнее, чем в газопроводах. Во-первых, воздухопроводы бывают не только круглого сечения (из листового железа) часто они устраиваются в виде каналов прямоугольного или квадратного сечения из шлакогипсовых или шлакобетонных плит, а также в кирпичной кладке. Каждая из этих конструкций имеет весьма различную шероховатость стенок и стандартные размеры. Во-вторых, при определении эквивалентного диаметра [формула (238)] нормализованные размеры прямоугольных каналов дают различные не округленные значения. Наконец, системы с естественным и механическим побуждением воздуха работают в различных диапазонах скоростей. Это приводит к тому, что при расчете воздухопроводов нельзя ограничиться одной номограммой типа рис. 150.  [c.286]

Тонкослойные элементы или блоки могут выполняться из Мягких или полужестких полимерных пленок, соединенных в сотовую конструкцию, или из жестких листовых материалов в виде отдельных полок. Размеры в плане отдельных блоков для удобства их монтажа и эксплуатации следует принимать в пределах 1x1. .. 1,5x1,5 м с учетом фактических размеров сооружения. Высоту поперечного сечения тонкослойного ячеистого элемента рекомендуется принимать в пределах 0,03... 0,05 м. Ячейки могут быть приняты любой формы, исключающей на копление в них осадка. Угол наклона элементов необходима принимать в пределах 50. .. 60° (меньшие значения для более мутных вод, большие — для маломутных цветных). Длину тонкослойных элементов определяют специальным расчетом в пределах 0,6. .. 1,5 м. Установку отдельных блоков следует осуществлять с помощью специальных несущих конструкций, расположенных под или над ними, а также путем их крепления к элементам сборной системы (желобам, лоткам, трубам) и  [c.177]

В системе Компас для трехмерного твердотельного моделирования используется оригинальное графическое ядро. Синтез конструкций выполняется с помощью булевых операций над объемными примитивами, модели деталей формируются путем выдавливания или вращения контуров, построением по заданным сечениям. Возможно задание зависимостей между параметрами конструкции, расчет масс-инерционных характеристик. Разработка проектно-конструкторской документации, в том числе различных спецификаций, выполняется подсистемой Компас-График. Имеются библиотеки с данными о типовых деталях и графическими изображениями, а также программы специального назначения (проектирование тел вращения, пружин, металлоконструкций, трубопроводной арматуры, штамповой оснастки, выбора подшипников качения, раскроя листового материала и др.). Проектирование технологических процессов выполняется с помощью подсистемы Компас-Автопроект, программирование объемной обработки на станках с ЧПУ — с помощью подсистемы ГБММА-ЗО. Ряд необходимых функций управления проектными данными возложено на подсистему Компас-Менеджер.  [c.222]

В четвертом томе приведены классификация и методика расчета операций листовой штамповки, изложены основы проектирования технолосических процессов. Даны рекомендации по выбору и оптимизации раскроя, применению смазочных материалов, определению деформационных, силовых и энергетических характеристик. Приведены расчеты параметров формоизменения и предельного формоизменения. Рассмотрены примеры расчета и проектирования технологических процессов. Представлены типовые конструкции штамсюв и рекомендации по их выбору, а также основные типы специализированного оборудования.  [c.4]

Листовой прокате гофрами (рис. IIL1.35) нашел, в частности, применение при изготовлении пролетных балок коробчатого сечения для серийно выпускаемых мостовых кранов общего назначения. По сравнению с плоскими элементами с продольными ребрами жесткости гофрированные элементы обладают рядом преимуществ снижением трудоемкости изготовления, расхода сварочных материалов, простотой покраски конструкции. Методы расчета стенок с гофрами описаны в работах [46, 78, 105].  [c.398]

В процессе вырубки (штамповки) необходимо установить на стол 1 ручного пресса блок штампа в такое положение, чтобы площадка 5 верхней плиты 3 совпала с центром ползуна 4 пресса, после чего вставить в направляющий паз съемника 11 ленту (заготовку) до упора ловителя 15. Затем двумя руками захватывают штурвал пресса и, поворачивая его влево, опускают ползун 4 на плоскость 5 верхней плиты штампа, производят легкий удар, с таким расчетом, чтобы пуансон 9 вошел в матрицу 10 на одну треть толщины ленты и вырубил деталь. Не отпуская рук от штурвала, его поворачивают вправо и поднимают ползун. В это же время спиральные пружины 8, разжимаясь, возвращают в исходное положение верхнюю плиту с пуансоном. На рис. 161,а, б, в показан- тип простейших конструкций групповых блоков (штампов), предназначенных для вырубки отверстий в листовых заготовках на ручном прессе. Блок 7 состоит из скобообразного корпуса. В верхней части корпуса имеется направляющее отверстие, по которому перемещается колонка 6 со вставленным пуансоном и спиральной пружиной 4. Пуансон точно сцентрирован с отверстием (матрицей), имеющимся в нижней части корпуса блока. На боковой стороне корпуса сверху (слева) закреплен кронштейн с ловителем 3, фиксирующим шаг вырубаемого отверстия в ленте, а в середине корпуса установлена направляющая планка (столик) 8, по которому перемещается заготовка 2 (лента).  [c.164]

Для цехов листовой штамповки расчет выполняют следующим образом. Все подлежащие изготовлению листовые детали разбивают на группы по принципу однородности технологии и более или менее близких станкоемкости и трудоемкости. Каждая группа объединяет детали приблизительно подобные по конструкции, геометрическим формам, размерам и другим признакам. От каждой группы отбирается типовой представитель — деталь, обладающая наибольшим числом отличитель-  [c.103]


Смотреть страницы где упоминается термин Расчет листовой конструкции : [c.114]    [c.124]    [c.125]    [c.158]    [c.19]    [c.264]    [c.233]    [c.242]    [c.201]    [c.43]    [c.418]   
Крановые грузозахватные устройства (1982) -- [ c.210 ]



ПОИСК



Листовые конструкции

Листовые конструкции (расчет и проектирование)



© 2025 Mash-xxl.info Реклама на сайте