Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цикл число в элементах конструкции

Таблица 39. Число циклов напряжений в элементах конструкций. I- Таблица 39. Число <a href="/info/6095">циклов напряжений</a> в элементах конструкций. I-

Рис. 1.25. Зависимость (а) суммарного сигнала АЭ от числа циклов нагружения любого элемента конструкции с ( ) ее совмещением с изменением уровня напряжения в сосуде под давлением [129,130], а также сопоставление для двух марок стали (в), (г) закономерности изменения сигналов акустической эмиссии со скоростью роста усталостной трещины [131]. Первое изменение угла наклона ai, указанной в (а), (б) зависимости отвечает моменту зарождения усталостной трещины Рис. 1.25. Зависимость (а) суммарного сигнала АЭ от числа циклов нагружения любого <a href="/info/28902">элемента конструкции</a> с ( ) ее совмещением с изменением уровня напряжения в сосуде под давлением [129,130], а также сопоставление для двух марок стали (в), (г) закономерности изменения сигналов <a href="/info/32575">акустической эмиссии</a> со <a href="/info/129608">скоростью роста усталостной трещины</a> [131]. Первое изменение угла наклона ai, указанной в (а), (б) зависимости отвечает моменту зарождения усталостной трещины
Для оценки числа циклов до разрушения в зоне конструктивной концентрации напряжений необходимо определение величин местных напряжений и деформаций с учетом деформирования в упругопластической области (см. гл. 1, 2). Это может быть осуществлено [11, 12] при известных номинальных напряжениях в элементе конструкции о = а /от и теоретическом коэффициенте концентрации напряжений через соответствующие коэффициенты концентрации напряжений и деформаций К и АД в упругопластической области (при Оп < 1,0) по зависимостям типа (2.14)  [c.131]

Роторы турбин и генераторов находятся под действием статических и повторно-статических (малоцикловых) напряжений, обусловленных центробежными силами и тепловыми нагрузками при испытаниях, эксплуатационных пусках и остановах, а также при изменении мощности. Число таких циклов может достигать 20—60 и более в год при общем числе за расчетный ресурс 500— 1000 и более. Повторяющаяся смена нагрузок вызывает в роторах (особенно в местах повышенной концентрации и значительных температурных напряжений) накопление малоцикловых повреждений. Сочетание повторных нагрузок с повышенными температурами в элементах конструкций высокого давления является причиной ускорения накопления повреждений за счет длительных статических повреждений. Кроме того, на низкочастотные (10- —10 Гц) циклы высоких напряжений накладываются высокочастотные (в диапазоне частот 10—150 Гц) циклы переменных напряжений, обусловленные действием нагрузок от силы тяжести на оборотных частотах , срывом масляного клина в подшипниках или вибрационных нагрузок за счет изгибных и крутильных колебаний роторов по соответствующим формам. Суммарное число циклов нагружения за расчетный ресурс достигает при этом 10 — 10 . Вибрационная составляющая циклических напряжений для роторов турбин и генераторов при современном уровне балансировки, предварительных доводочных работ и контроля вибраций при эксплуатации может быть снижена практически до безопасных уровней при нормальной эксплуатации. Но роль этой составляющей резко возрастает при изменении жесткости роторов на стадии развития в них макротрещин. Для роторов паровых турбин в интервале указанных низких и высоких частот могут иметь место циклы нагружения с промежуточными частотами (0,01 —10 Гц) в результате неравномерности давлений и температур потоков пара. Таким образом, фактический спектр механических и температурных напряжений для роторов турбин и турбогенераторов оказывается достаточно сложным. Сложность формы цикла возрастает по мере повышения температур (образуются деформации ползучести), а также за счет изменения асимметрии цикла при наличии остаточных напряжений.  [c.7]


Существенно, что для характерных зон концентрации деформаций при допускаемых в элементах конструкций повторных механических и термических нагрузках циклические пластические деформации локализованы и ограничены по величине, так что при произвольном внешнем воздействии реализуется л<есткий или близкий к жесткому режим нагружения. Об этом свидетельствуют результаты расчета по числу циклов N при малоцикловом изотермическом нагружениях [17], приведенные ниже  [c.114]

При измерении малоцикловых деформаций в элементах конструкций с помощью тензорезисторов очень важна стабильность их характеристик во времени и по числу циклов в условиях циклического воздействия температур. Имеются данные, что при упругих деформациях не изменяются основные характеристики до числа циклов нагружения 10 (например, для тензодатчиков ПКБ-20-120) 92]. При работе тензорезисторов за пределами упругости и повторном деформировании возникает ряд специфических особенностей непостоянство коэффициента тензочувствительности при высоких циклических деформациях и его изменение по числу циклов нагружения уход нуля в процессе циклического деформирования выход из строя тензорезисторов через определенное для каждого уровня размаха деформаций число циклов нагружения.  [c.170]

В связи с развитием методов и средств обнаружения и измерения возникающих и развивающихся тре-, щин в элементах конструкций представляется целесообразным дать оценку их несущей способности в зависимости от стадии разрушения. Такая оценка должна основываться на закономерностях развития трещин при циклическом нагружении, установленных методами механики разрушения при рассмотрении предельных состояний, соответствующих росту трещин до критических размеров. Запас прочности в этом случае рассматривается в ресурсном смысле, как отношение времени или числа циклов, необходимых для достижения предельного состояния, к времени или числу циклов, нарабатываемому за время службы, т. с. Пх или rij . Закономерности развития трещин при циклическом и длительном статическом нагружении выражаются через значения интенсивности напряжений Ki (см. гл. 5). Последняя зависит от размеров трещин и условий нагружения, а также от параметров уравнений, описывающих механические свойства материала. Эти параметры зависят от температуры и изменения состояния материалов в процессе службы.  [c.8]

Целесообразно при составлении набора переходных режимов нагружения с целью, маркировки изломов исходить тех задач, которые решаются с их помощью установление соотношения между числом бороздок и нагружающих циклов для материала (выбор образца и условий опыта не лимитирован) и слежение за ростом трещины в элементах конструкции в процессе натурных стендовых испытаний изделий.  [c.290]

Характер изменения во времени нагрузки машин н конструкций не одинаков. Машина может быть нагружена силами, изменяющимися с большой частотой и вызывающими многократное повторение одного и того же неизменного цикла напряжения. Нагружение конструкций типа мостов происходит на протяжении многих лет, причем величина сил при каждом нагружении бывает различной. Ввиду этого при расчете прочно сти машин можно более уверенно пользоваться результатами лабораторных усталостных испытаний. В тех немногих случаях, когда имелась возможность сравнения лабораторных испытаний и действительных усталостных разрушений реальных конструкций, было установлено, что обычные лабораторные испытания позволяют с достаточной точностью предсказывать поведение реальной конструкции в условиях усталости. При этом, однако, напряжения в элементах конструкции и закон изменения напряжений во времени должны быть определены путем тензометрирования, а не путем расчета на основании обычно принимаемых допущений о распределении сил и напряжении в элементах конструкции и о числе. циклов нагружения.  [c.51]

Развитие механики твердого тела на этих стадиях способствовало новой постановке вопросов сопротивления материалов, расчета прочности и долговечности элементов конструкций. Возникла вероятностная трактовка расчета на сопротивление усталости по признаку возникновения трещины, разработаны методы линейной механики разрушения для расчета на сопротивление хрупкому разрушению, методы расчета на сопротивление повторным пластическим деформациям в связи с явлениями усталости в пределах малого числа циклов. Эти методы все шире используются при проектировании высоконагруженных конструкций, они получают отражение в нормативных материалах промышленности.  [c.5]


Расчет на усталость (при переходе элементов конструкций к предельному состоянию) для ограниченного числа циклов действия напряжений можно осуществлять для заданного уровня напряжений по числу циклов. При этом в расчет вводят наработанное число циклов Ng, отвечающее расчетному ресурсу, и разрушаю-  [c.127]

При испытании на надежность с учетом длительного периода работы изделия помимо вышеуказанной аппаратуры необходимы средства для регистрации процессов повреждения, происходящих в машине (измерение износа сопряжений, деформаций и коробления элементов конструкции, наростообразования и т.п.), и процессов изменения значений выходных параметров, приборы для контроля временных характеристик (длительности работы изделия, рабочих циклов, холостых ходов, перерывов в работе), а также устройства для обработки информации. Однако главная трудность заключается не в создании необходимых условий для испытания и регистрации параметров, а в факторе времени. Реальная ситуация при испытании сложных изделий заключается в том, что нет ни достаточного времени, ни достаточного числа изделий для получения таких исходных статистических данных, которые позволили бы с необходимой достоверностью определить показатели надежности.  [c.514]

Применительно к усталости предложено использовать в качестве силового критерия достижения предельного состояния материала соотношение (Ру/Т .) [4]. Согласно этому критерию, разрушение наступает после того, как в одном из циклов нагружения достигнута предельная величина напряженного состояния, характеризуемая рассматриваемым соотношением. Охарактеризовав напряженное состояние основного несущего силового элемента конструкции, можно оценить затраты энергии на его разрушение путем определения объема пластически деформируемого материала, соответствующего этому напряженному состоянию независимо от способа или условий внешнего циклического нагружения (число и направление действия силовых факторов).  [c.30]

Соотношение (1.21) указывает на уменьшение доли периода роста трещины в долговечности сварного соединения по мере возрастания числа циклов нагружения до разрушения соединения. Относительная доля периода роста трещины в периоде нагружения элемента конструкции до ра.зру-шения существенно зависит от условий нагружения элемента конструкции, вида материала и состояния поверхности, а также концентрации напряжений. При ВЫСОКО концентрации напряжений доля периода роста трещины в общей долговечности образца или элемента конструкции может оказаться значительной. Возникает естественный вопрос о том, в какой мере соотношение между периодами зарождения и роста трещины может быть использовано для характеристики поведения материала при циклическом нагружении. Указанная информация позволяет установить, насколько эти два разных способа накопления повреждений материала взаимосвязаны или зависимы между собой для разных условий нагружения и их концентрации в районе очага разрушения.  [c.61]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]

Напряженное состояние материала в средней части фронта трещины всегда остается объемным, что обеспечивает сохранение подобия по напряженному состоянию материала для конкретного элемента конструкции в широком спектре варьируемых условий внешнего воздействия. Последовательность реакций материала на последовательность внешних нагрузок будем в дальнейшем характеризовать величинами (о ),, являющимися последовательностью эквивалентных напряжений каждого цикла внешнего силового нагружения в процессе роста усталостной трещины. Последовательное развитие трещины от начального размера до критической длины а , отвечающей достижению точки бифуркации в связи с началом нестабильного процесса разрушения, когда происходит разрушение твердого тела без подвода энергии извне, характеризует конечное число Пр приращений 8,. Величина Пр представляет собой число циклов нагружения элемента конструкции или образца в процессе распространения усталостной трещины. Это позволяет охарактеризовать длину стабильно развивающейся трещины как  [c.202]


Во втором слз ае нагружения материала в области выше критических условий влияние изменения частоты нагружения, выдержки под нагрузкой и температуры не изменяет механизма формирования усталостных бороздок. С увеличением температуры их шаг нарастает в связи с различными процессами разрастания затупления вершины или нарастанием пор перед вершиной (см. рис. 7.12). Однако их количество полностью характеризует количество циклов нагружения образца, а следовательно, и разрушенного в эксплуатации элемента конструкции. Поэтому оценка длительности роста усталостных трещин по числу усталостных бороздок является корректной для практики. В этом случае может быть проведена оценка уровня эквивалентной деформации или напряжения по соотношениям, представленным в главе 4 настоящей книги. Решение прямой задачи моделирования роста трещин в условиях многофакторного воздействия оказывается более сложной проблемой. Необходимо использовать вид уравнения с различной величиной показателя степени у длины трещины на основе испытания образцов для различных материалов.  [c.359]

При исследованиях сопротивления деформированию и разрушению при малом числе циклов нагружения распространение получили испытания при мягком и жестком нагружении как с симметричным, так и асимметричным циклом. Названные типы испытаний представляют собой достаточно контрастные нагружения, причем охватывается общий случай работы за пределами упругости какого-либо элемента конструкции, так как характер изменения напряжений и деформаций в зоне концентрации при повторном нагружении, как правило, лежит в области между мягким и жестким нагружением.  [c.6]

Для расчетной реализации деформационно-кинетических критериев длительного малоциклового разрушения, помимо характеристик предельных деформаций, необходимо знать изменение необратимой и односторонне накопленной деформации по числу циклов и во времени. При этом специфика исследования деформационных свойств при высоких температурах связана с возможным влиянием реологических характеристик и в соответствии с этим со значением, которое приобретают скорость и время циклического деформирования, наличие или отсутствие длительных высокотемпературных выдержек под напряжением и без, характерных для условий работы высоконагруженных элементов конструкций.  [c.85]

Таким образом, в случае измерения циклических деформаций в зоне выраженной концентрации нагружений при стационарном нагружении, когда характер нагружения оказывается близким к жесткому, расчет по величинам деформаций в цикле с учетом изменения с числом циклов нагружения исходного сопротивления тензорезистора по уравнениям (3.2.1) позволяет внести поправку в данные тензометрирования с целью определения действительной истории нагружения элемента конструкции. Одновременно свойство тензорезисторов увеличивать исходное сопротивление при малоцикловом нагружении используется для оценки накопления усталостных повреждений. Величиной прироста исходного сопротивления тензорезисторов, устанавливаемых в зонах концентрации, определяется степень исчерпания ресурса изделий. Вместе с тем интегральная оценка прироста сопротивления тензорезистора не позволяет выполнять покомпонентную оценку накопления усталостных и квазистатических малоцикловых повреждений, что существенно для расчета прочности, и требуется разработка и экспериментальное обоснование указанной процедуры.  [c.268]

С другой стороны, возросшие требования к повышению долговечности и надежности конструкций определяют потребность изучения усталостных свойств при больших значениях долговечности, соответствующих реальным числам циклов нагружения элементов конструкций до выработки установленного ресурса, которые для ряда элементов конструкций достигают 10 —10 циклов. При этом в связи с заметным рассеиванием характеристик сопротивления многоцикловому усталостному разрушению изучение усталостных свойств необходимо проводить в вероятностной постановке. Кроме того, переход к эксплуатации ответственных элементов конструкций по безопасному повреждению требует всестороннего изучения вероятностных закономерностей процесса развития усталостных трещин.  [c.26]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Анализ НДС элементов конструкции при малоцикловом термомеханическом нагружении (см. гл. 4) дает необходимую информацию о циклических упругопластических деформациях в наиболее нагруженных зонах конструкций, а также зависимости этих деформаций от числа циклов, скорости нагружения и длительности выдержки при постоянной нагрузке. Эту информацию принимают в качестве исходных данных при оценке прочности конструктивных элементов с помощью деформационно-ки-нетического критерия прочности (см. гл. 2).  [c.246]

В качестве звена настройки в современных моделях чаще всего применяются сменные шестерни. Область регулирования / = 10 - 20 обеспечивается одной или двумя парами. При применении двух пар одна даёт основной ряд скоростей, вторая меняет диапазон. В старых конструкциях применялись коробки скоростей с числом ступеней до 9. В некоторых случаях помимо элементов настройки имеются звенья, позволяющие переключать скорости в течение цикла (в патронных станках) в 2—6 ступеней с помощью скользящих шестерён или муфт. На фиг. 52 приведена  [c.284]

Поцикловая оценка уровня накопленных повреждений в элементе конструкции с учетом эксплуатационных условий нагружения и особенностей конструктивных форм является основой для уточненного определения разрушающего числа циклов нагружения рассматриваемого элемента конструкции и назначения в соответствии с этим допускаемых параметров работы.  [c.260]

Из приведенных выше данных об условиях эксплуатационного нагружения и разрушения конструкций следует, что большое число несущих элементов конструкций и деталей машин в процессе эксплуатации подвергается действию циклических нагрузок (механических, электромагнитных и тепловых) с числом циклов от 1 до 10 при температурах от -250°С до -Ь600°С. При этом время одного цикла нагр> жения может измеряться от секунд до тысяч часов. Применяемые кон-стр>т<ционные металлические материалы и.ме-ют пределы текучести от 150 до 1500 МПа, пределы прочности от 400 до 2000 МПа, относительное сужение от 5 до 70%.  [c.77]


ЮХСНД — т ом = 0,25. Значение разрушающего напряжения а для заданного числа циклов нагружения конструкции N может быть получено на основании (1), где равно 5-10 сгдгв — значение ограниченного предела выносливости при Л 5, а т ом — характеристика материала. Участок кривой малоцикловой усталости при напряжениях выше для реальных конструкций, как правило, не реализуется, так как номинальные напряжения в элементах конструкций не превышают значения в то время как для обычно применяемых строительных сталей (с пределом текучести до 50 даН/мм ) существенно меньше о р.  [c.264]

По частоте приложения повторные нагрузки можно условно разделить иа высокочастотные, вызывающие в элементах конструкции низкие рабочие напряжения, ие превосходящие предел выносливости материала, т. е. ту величину, при которой материал выдерживает условное (базовое) число циклов или может работать без нарушения целостности иеопределеиио долго (к этому типу можно отнести вибрационные и акустические нагрузки с частотой 10—10 000 гц), и низкочастотные, но достаточно большие по величине, вызывающие в элементах конструкции рабочие напряжения, превосходящие предел выносливости или условное (базовое) число циклов. Так как частота приложения этнх нагрузок обычно меньше частоты собственных колебаний конструкции, то онн носят название повторно-статическнх. К этому виду можно отнести маневренные  [c.496]

Во многих реальных инженерных конструкциях наблюдается разрушение после относительно небольшого числа циклов нагружения, исчисляемого несколькими тысячами повторений. Разрушение после малого числа циклов нагружения от так называемой малоцикловой усталости обычно происходит при значительной (около 1%) пластической циклической деформации в макрообъемах рассматриваемого элемента конструкции.  [c.618]

Рассмотрим условия, опреде.пяющие долговечность элемента конструкции на стадии развития трещины. Как указывалось, число циклов, соответствующее росту трещины от начальной длины и до критической /с, определяет долговечность данного элемента конструкции по числу циклов. Чтобы обеспечить прочность конструкции, долговечность должна быть больше числа перемен заданной нагрузки. Таким образом, наряду с оценкой материала по классической кривой Велера, существенную информацию о поведении элемента конструкции с трещиной в условиях усталости должна дать механика разрушения. Следовательно, в данном случае, как обычно, надо исходить из того, что начальный трещиноподобный дефект существует в конструкции с момента ее изготовления (несмотря на дефектоскопический контроль, который, как известно, имеет определенный допуск на размер не-обиаружпваемых дефектов). К сварным конструкциям это относится в большей мере, и в этом случае желательно иметь критические значения коэффициентов иитеисивиости напряжений (Кс или Я/с) для основного материала, материала шва и материала переходной, термически поврежденной, зоны. Кроме этого, для сварных конструкций я елательно в области сварного шва знать величину и распределение остаточных напряжений. Все это вместе взятое способствует уточнению расчетов.  [c.272]

Приведенные выше данные о сопротивлении материалов деформированию и разрушению при малоцикловом нагружении позволяют определять несущую способность элементов конструкций (рис. 5.12). Для этого используют также данные об их эксплуатационной нагруженно-сти (механической и тепловой). К числу таких данных, в первую очередь, относятся нагрузка Qg и число циклов нагружения (см. рис. 5.12,а). При выбранных для  [c.95]

Существенно, что надежиость, безотказность изделия (машины, конструкции, детали) связывается с определенным сроком службы. В большинстве случаев под сроком службы понимается время работы изделия под narpysKoii или число циклов нагружений. Например, для самолетных конструкций срок службы определяется числом полетных циклов. Число полетов является важным показателем для оценки работоспособности конструкции, так как наибольшие нагрузки па ряд элементов самолета возникают при посадке.  [c.9]

Анализ подходов к оценке безопасного ресурса основных силовых элементов авиаконструкций свидетельствует о формировании для всех случаев эксплуатационного нагружения каждого элемента конструкции некоторого блока последовательно действующих циклических нагрузок. Он по интенсивности воздействия в той или иной мере является эквивалентом предполагаемого повреждения конструкции, которое должно быть реализовано в условиях эксплуатации. Оцениваемый на его основе период или срок эксплуатации ВС или ГТД выражается числом циклов соответственно ЗВЗ или ПЦН, а также одновременно выражается в часах наработки с учетом средней продолжительности полета ВС. Последнее необходимо в связи с тем, что продолжительность полетов различного типа ВС в эксплуатации может колебаться в широких пределах в зависимости от решаемых ими задач. Так, например, для вертолетов средняя продолжительность полета составляет около 30-40 мин, тогда как для самолета длительность полета может достигать 7 ч.  [c.44]

Достижение предела усталости для материала оказывается возможным только в ограниченной области циклического нагружения. При возрастании числа циклов нагрулсения даже для сталей, для которых не наблюдались разрушения на базе 10 -10 циклов, дальнейшее нагружение сопровождается появлением разрушений [99]. Исследования на круглых образцах стали SUJ2, содержащей С — 1,01 % и Сг — 1,45 %, при частоте изгиба с вращением 50 Гц влияния длительного нагружения на усталостную прочность показали следующее (рис. 1.17). Постепенное снижение уровня напряжения позволяет достичь второго предела усталости. Разрушения материала между двумя пределами усталости связаны с возникновением усталостной трещины под поверхностью элемента конструкции. Поэтому основная долговечность детали с трещиной определяется периодом ее зарождения и распространения до выхода на поверхность. В рассмотренных результатах эксперимента соотношение между первым и вторым пределом усталости составило 0,552.  [c.55]

В представленном соотношении указана связь между определяемым фрактографически уровнем эквивалентного напряжения <7 и уровнем одноосного циклического напряжения с нулевой асимметрией цикла через поправочную функцию с параметрами X,. Каждый параметр характеризует условия циклического нагружения элемента конструкции в эксплуатации. Поскольку после разрушения любого элемента конструкции, в том числе и лопаток ГТД, никогда не известны условия его нагружения в полной мере, то всегда определяемая фрактографически величина эквивалентного уровня напряжения не позволяет дать оценку значимости в разрушении того или иного фактора внешнего воздействия. Однако она указывает на интегральную роль условий нагружения на затраты энергии при циклическом нагружении материала в процессе роста трещины.  [c.581]

Итак, развитие усталостных трещин в процессе эксплуатации элементов конструкций и деталей системы управления ВС является длительным. Это позволяет эффективно проводить их контроль и осуществлять эксплуатацию по принципу безопасного повреждения при обеспечении надежности функционирования систем даже при однократном пропуске трещины, поскольку число полетов с развивающейся трещиной составляет от одной до нескольких тысяч. При определении повреждающего цикла следует исходить из того, что основную роль в развитии трещины играет блок нагрузок от вибраций, которые накладываются на статическую нагрузку, возникающую в момент функционирования системы в полете. В зависимости от вида элемента конструкции вибрации вызывают продвижение трещины или могут не оказывать влияние на ее продвижение. В первом случае имеет место формирование мезоусталостных линий с площадками излома между ними, а во втором случае каждый акт функционирования элемента конструкции в полете связан с формированием каждой усталостной бороздки. В зависимости от условий работы разное число усталостных бороздок может характеризовать один полет ВС. Однако и в этом случае может быть проведена оценка числа бороздок за полет, поскольку начало функционирования и повторение этих действий в полете имеют некоторые различия, что отражается в различии профиля усталостных линий и бороздок, а также в различиях закономерности изменения шага бороздок по направлению роста трещины. Все это несколько усложняет интерпретацию  [c.753]

Отличительной особенностью процесса сопротивления материалов малоцикловому нагружению является непостоянство с числом циклов и во времени диаграммьг деформирования. Следствием отмеченного оказывается перераспределение в общем случае напряжений и деформаций в процессе циклического нагружения за пределами упругости элемента конструкции. При этом возникает явление нестационарности условий деформирования даже при повторном нагружении конструкции постоянными нагрузками (механическими и термическими). С другой стороны, условия циклического деформирования за пределами упругости определяют величины циклических и односторонне накоп.ленных деформаций на стадии образования макротрещины и особенности достижения предельного состояния по разрушению.  [c.5]


Создать нагружающие комплексы с грузоспособностью и производительностью, позволяющей выполнять испытание на уровнях нагрузок, соответствующих эксплуатационным или превышающих их (в последнем случае ведется экстраполяция полученных данных на эксплуатационные режимы), с доведением элементов конструкций до разрушения или набора числа нагружений, соответствующего требуемому ресурсу изделия с учетом запаса по числу циклов.  [c.135]

В современных конструкциях сосудов высокого давления, энергетических установках и аппаратах широко применяются резьбовые соединения больших диаметров, работающие в условиях переменного теплового и механического воздействия. Такие условия внешнего нагружения приводят к упругопластическому циклическому деформированию с возможным выходом из строя при малом числе циклов нагружения. Из-за ограничений по компоновке увеличить размеры этих соединений не представляется возмонсным. Для изготовления элементов крепежа в энергетике и других отраслях техники применяются теплоустойчивые стали, обладающие высокими характеристиками сопротивления однократному нагружению и пониженными свойствами пластичности. Дальнейшее повышение механических свойств применяемых металлов не приводит к увеличению сопротивления циклическому разрушению резьбовых соединений из-за смены механизма разрушения усталостного на хрупкий). Повышения работоспособности резьбовых соединений можно достигнуть лишь совершенствованием конструкций и применением материалов, обладающих повышенной сопротивляемостью циклическому нагружению при наличии трещин  [c.387]

Для оценки прочности элементов конструкций при неизотермическом малоцикловом нагружении в соответствии с критериальным соотношением (1.4) необходима информация о кинетике параметров процесса циклического упругопластического деформирования в условиях проявления временньк эффектов в опасной зоне конструктивного элемента. Необходимы данные об изменении полной или необратимой деформации, о накоплении деформаций с увеличением числа циклов нагружения, а также кривая малоцикловой усталости соответствующего режима нагружения и нагрева.  [c.12]


Смотреть страницы где упоминается термин Цикл число в элементах конструкции : [c.268]    [c.274]    [c.144]    [c.127]    [c.266]    [c.97]    [c.216]    [c.19]    [c.37]    [c.45]    [c.207]   
Сопротивление материалов Издание 13 (1962) -- [ c.766 ]



ПОИСК



Расчет элементов конструкций на долговечность по числу циклов

Расчет элементов конструкций на прочность при малом числе циклов нагружения (А- П. Гусенков)

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте