Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженность действующего электрического поля

Зависимость у от внешнего поля Е, рассчитанная по формулам (4. 4. 32) я (4. 4. 33), показана на рис. 49 для различных значений диэлектрической проницаемости газа Видно, что если е /е < 20 (кривые 1,2), то пузырек газа может неограниченно удлиняться под действием электрического поля. Однако он может стать неустойчивым с точки зрения сохранения поверхностной энергии и распасться на несколько пузырьков. Если 20 (кривая 4), то существует критическое значение напряженности электрического поля при котором пузырек теряет устойчивость.  [c.147]


Полученная в данном разделе теоретическая зависимость отношения длин полуосей эллипсоида, форму которого принимает газовый пузырек под действием электрического поля, от величины напряженности поля была экспериментально проверена в [52]. На рис. 50 точками показаны полученные экспериментальным путем значения у (Е) для пузырьков воздуха в бензоле, деформирующихся под действием электрического поля. Для сравнения на том же рисунке приводится теоретический вид зависимости у (Е), рассчитанной по формуле (4. 4. 32). Хорошее совпадение экспериментальных и теоретических результатов является под-  [c.147]

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Если индуктивность проводника настолько мала, что индукционные электрические поля оказываются пренебрежимо малыми, то движение электрических зарядов в проводнике определяется действием электрического поля, напряженность которого, в проводнике пропорциональна напряжению между концами проводника.  [c.240]

Так как ву и не равны между собой, то для всех направлений в кристалле, кроме главных, В и Е не совпадают между собой по направлению ). Действительно, если по некоторому направлению действует электрическое поле напряженности Е, соответствующее значение индукции можно получить следующим образом.  [c.499]

Молекулярно-кинетическое вычисление анизотропии, возникающей под действием электрического поля, требует статистического учета всех возможных ориентаций молекул под действием внешнего поля Е и теплового движения. Оно приводит к результатам, согласным с опытом, а именно постоянная Керра должна быть пропорциональна квадрату напряженности внешнего поля и уменьшается с увеличением температуры, ибо под действием тепловых столкновений расстраивается ориентация молекул, определяющая возникновение анизотропии.  [c.534]

Процесс поляризации (индукция дипольного момента) осуществляется и в каждой отдельной молекуле. Под действием внешнего поля в молекуле возникает дипольный момент р, который пропорционален напряженности поля Е р = аЕ, где а—поляризуемость, характеризующая свойства молекулы и непосредственно связанная с размером ее электронного облака. Поляризуемость определяет смещение электронной оболочки молекулы под действием электрического поля, т. е. объем, который может занять эта оболочка, поэтому поляризуемость имеет размерность объема (см ).  [c.4]

Таким образом, зависимость эффекта Керра от квадрата напряженности поля обусловлена тем, что искусственная анизотропия в электрическом поле зависит, во-первых, от способности молекул поляризоваться под действием электрического поля и, во-вторых, от степени ориентации поляризованных молекул в этом же поле.  [c.68]


Создавая в пространстве за анодом трубки электрическое и магнитное поля различной конфигурации, можно по характеру движения электронов определить испытываемые ими в этих полях ускорения и установить связь с силами, действующими на электроны со стороны этих полей. Одна из возможных конфигураций электрического и магнитного полей, пригодная для этих опытов, такова (рис. 44). Трубка располагается между полюсами электромагнита, создающего однородное магнитное поле. Это поле существует во всем пространстве за анодом (на рис. 44 это поле перпендикулярно к плоскости чертежа, точки — следы магнитных силовых линий). Внутри трубки непосредственно за отверстием в аноде располагается плоский конденсатор с очень малым расстоянием между пластинами, к которому подводится регулируемое постоянное напряжение U - Электрическое поле конденсатора  [c.87]

Если имеется внешнее электрическое поле, то под действием электрической силы импульс каждого электрона изменяется. Однако нельзя изменить модуль импульса, оставаясь на том же энергетическом уровне. Следовательно, под действием электрического поля возможны переходы с одного энергетического уровня на другой. Одновременно при этих переходах импульсы перераспределяются по направлениям, так что преимущественным направлением движения электронов становится направление, совпадающее с направлением действия электрической силы количество электронов с импульсом против напряженности поля увеличивается, а с импульсом по напряженности поля-уменьшается.  [c.339]

Магнитная гидродинамика изучает движение электропроводящих жидкостей и газов в электромагнитном поле. Движение непроводящих сред, при которых пондеромоторные силы возникают только под действием электрического поля, изучает электрогидродинамика. При этом в обоих случаях имеется в виду известное в обычной гидродинамике приближение сплошной среды. Кроме того, считается, что жидкость является немагнитной, она действует на магнитное поле не просто своим присутствием, а благодаря текущим в ней электрическим токам. Эти токи обладают собственным магнитным полем, благодаря чему напряженность магнитного поля в среде изменяется. С другой стороны, движущаяся электропроводная среда испытывает со стороны магнитного поля действие некоторых сил, зависящих от напряженности магнитного поля и скорости движения среды. Таким образом, можно сказать, что движение воздействует на магнитное поле, а магнитное поле оказывает воздействие на движение.  [c.389]

Ранее рассматривались различные физические явления, происходящие в диэлектрике под действием электрического поля не слишком высокой напряженности, когда диэлектрик остается практически непроводящей средой. Однако силы электрического поля при соответствую ще.м увеличении напряженности могут привести к нарушению такого состояния. В результате диэлектрик из непроводящего состояния перейдет в состояние высокой проводимости, но не весь образец, на который подано напряжение, а только узкий канал, направленный от электрода к электроду.  [c.114]

Физическая картина пробоя твердых диэлектриков в разных случаях может быть весьма различна. Наряду с ионизационными процессами к пробою могут приводить вторичные процессы, обусловленные сильным электрическим полем нагрев, химические реакции, частичные разряды, механические напряжения а результате электрострикции, образование объемных зарядов на границах неоднородностей и т.п. Поэтому различают несколько механизмов пробоя твердых диэлектриков непосредственно под действием электрического поля.  [c.123]

Нефтяные масла склонны и к электрическому старению, т.е. они могут ухудшать свои свойства под действием электрического поля высокой напряженности. Для пропитки конденсаторов с целью получения повышенной емкости в данных габаритных размерах конденсатора желательно иметь полярный жидкий диэлектрик с более высоким, чем у неполярных масел, значением Ег. Для этих целей служат синтетические жидкие диэлектрики по тем или иным свойствам превосходящие нефтяные электроизоляционные масла.  [c.130]


При подаче напряжения вблизи игл возникает коронный разряд. Образующиеся при разряде положительные ионы быстро достигают поверхности коронирующего электрода, а отрицательные ионы и электроны движутся под действием электрического поля в сторону осадительных электродов. При этом часть электронов и отрицательных ионов оседает на поверхности золовых частиц и увлекает их к осадительным электродам. При встряске осадительных электродов осевшая на них зола ссыпается в золовые бункера 8.  [c.146]

РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]

Электрическая прочность керамики оценивается по ее способности противостоять до разрушения действию электрического поля. Напряжение, при котором электрическая прочность испытуемого изделия (или образца) теряется и происходит его пробой, называют пробивным напряжением. Напряженность поля, при которой происходит пробой, называют пробивной напряженностью, 24  [c.24]

Напомним, что в электромагнитной волне колеблются напряженности и электрического, и магнитного полей. По своему действию они не эквивалентны. Например, почернение фотопластинки вызывается действием электрического поля. Поэтому в дальнейшем для определенности будем иметь в виду колебания именно электрического поля.  [c.60]

При втором способе возбуждения дуговой разряд развивается из искрового. Для создания искрового разряда используют специальное устройство - осциллятор, который представляет собой генератор высоковольтного U = 2000...4000 В) высокочастотного (/ = 250 кГц) электрического разряда. Осциллятор подключают или параллельно газовому промежутку между электродом и изделием, или последовательно с этим промежутком. Напряженность электрического поля, создаваемого осциллятором между электродом и изделием, выше потенциала ионизации газа, что ведет к электрическому пробою газового промежутка. Создается ионизированный канал малого сечения, в котором развивается высокочастотный искровой разряд. Он обеспечивает развитие дугового разряда под действием электрического поля источника питания дуги и термических процессов при возрастании тока сварки. Поскольку работающий осциллятор - это мощный источник радиопомех, то после возбуждения дуги его отключают.  [c.87]

Если в теле с кристаллической структурой выделить поверхность (штриховая линия на рис. 2.4, а), то через фиксированную точку М (рис. 2.4, б) на этой поверхности можно провести множество плоскостей, каждой из которых будет соответствовать свой вектор полного напряжения р (М) (см. рис. 1.3). Компоненты этого вектора согласно (1.15) связаны с компонентами o i (М) тензора напряжений. Напряжение, вызванное в кристалле внешними силами, и тензор напряжений не зависят от свойств кристаллического тела и не связаны с его структурой. Поэтому расположение главных осей тензора напряжений не согласуется с осями симметрии кристаллической решетки, если с ними не согласовано направление действия внешних сил. В противоположность этому действие электрического поля на некоторые кристаллы вызывает в них деформации и напряжения (пьезоэлектрический эффект), которые согласуются с осями симметрии кристаллической решетки.  [c.60]

В жидких кристаллах первого класса наблюдается электрооптиче-ский эффект динамического рассеяния света. Сущность эффекта заключается в нарушении исходной упорядоченности молекул под действием электрического поля достаточной напряженности, появлением турбулентного перемешивания молекул и увеличением прозрачности. Жидкие кристаллы используют в цветных индикаторах и других цветовых устройствах. Для цветных изображений применяют смеси жидких кристаллов с красителями, также имеющими продолговатые молекулы. При низкой напряженности поля молекулы жидкого кристалла размещаются перпендикулярно электродам ячейки и увлекают за собой молекулы красителя. В таком положении окраска не видна. При вращении молекул под влиянием поля более высокой напряженности молекулы красителя окрашивают изображение в определенный цвет. В жидких кристаллах третьего класса при нагреве шаг спирали увеличивается, что меняет условия интерференции света на кристаллах и сопровождается изменением окраски отраженного света.  [c.38]


Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон лри свободном пробеге настолько увеличивает кинетическую энергию, что при соударе а1и с молекулой ионизует ео.  [c.169]

Простейшим прибором, работающим иа основе пспользования фотоэффекта, явл гется вакуумный фотоэлемент. Вакуумный фотоэлемент состоит из стеклянной колбы, снабженной двумя электрическими выводами. Внутренняя поверхность колбы частично покрыта тонким слоем металла. Это покрытие служит катодом фотоэлемента. В центре баллона расположен анод. Выводы катода и анода подключаются к источнику постоянного напряжения. При освещении катода с его поверхности вырываются электроны. Этот процесс называется внешним фотоэффектом. Электроны движутся под действием электрического поля к аноду. Б цепи фотоэлемента возникает электрический ток, сила тока пропорциональна мощности светового излучения. Таким образом фотоэлемент преобразует энергию светового излучения в энергию электрического тока.  [c.304]

Внутрь баллона, в котором создан вакуум, помещаются два электрода фотокатод К, изготовляемый из исследуемого материала, и анод А. Свет направляется на фотокатод через кварцевое окошко О. 5)лектроны, испущенные вследствие фотоэффекта (так называемые фотоэлектроны), перемещаются под действием электрического поля к аноду. Появление в цепи фототока регистрируется гальвапометро.м Г. Напряжение между фотокатодом и анодом изменяется потенциометром П, а измеряется вольтметром В.  [c.156]

Гравитационное поле. Понятие гравитационного поля требует пояснений. Оно вводится по аналогии с понятием электромагнитного поля и означает, что каждая точка пространства, окружающего тело М, приобретает способность действовать на любое тяжелое тело М2, попадающее в сферу действия поля сил тяготения. Это действие выражается во взаимном притяжении тел с силой is определяемой выражением (I). Поскольку силы тяготения убывают с расстоянием пропорционально В , радиус действия гравитационного поля практически бесконечен. В электростатике сила, с которой действует электрическое поле напряженностью Е на заряд q, пропорциональна величине этого заряда и равна F= E. В случае гравитационных полей сила также пропорциональна оаределенной физической характеристике тела, а именно его гравитационной массе, которая, следовательно, может быть названа гравитапиогаым зарядом. По аналогии с электростатикой запишем  [c.56]

Некоторые кристаллы (кварц, турмалин, сегнетова соль и др.) дают пьезоэлектрический эффект под действием упругой деформации на поверхности кристалла появляются электрические заряды (прямой пьезоэффект) и наоборот, под действием электрического поля они испытывают упругие деформации — сжимаются или растягиваются в зависимости от направления поля (обратный пьезоэф( )ект). Поэтому, если пластинку, вырезанную из пьезоэлектрического кристалла, поместить между обкладками конденсатора, к которому подводится переменное электрическое напряжение, то в пластинке будут возникать переменные упругие деформации, т. е. будут происходить вынужденные механические колебания. Но сама пластинка, как и всякое упругое тело, обладает собственными частотами колебаний, зависящими от  [c.744]

Подвижность заряженных частиц К определяется соотношением K=w/E, где W—дрейфовая скорость заряженных частиц в электрическом поле напряженностью Е. При высокой напряженности электрического поля Е, когда функция распределения заряженных частиц отличается от максвелловской и их температура не имеет прямого физического смысла, соотношение (20.3) справедливо приближенно, с погрешностью 10—15%, если при этом под температурой заряженных частиц понимать величму, связанную с их средней энергией ё соотношением 8 = кТ. В плазме, основной механизм проводимости которой связан с движением электронов под действием электрического поля, подвижность электронов Ке связана с проводимостью плазмы а соотношением  [c.430]

Основными характеристиками движения электронов в газе под действием электрического поля являются коэффициент поперечной диффузии D х и дрейфовая скорость электронов We. Однако поскольку коэффициент поперечной диффузии электронов в газе является функцией плотности частиц газа, в качестве справочных обычно используют значения и характеристической энергии электронов е, определяемой как отношение D к подвижности электронов Ке. Оба эти параметра являются однозначными функциями отношения напряженности электрического поля Е к плотности частиц газа Na. В табл. 20.1 приведены измеренные значения Se и We для некоторых газов при различных значениях отношения E/Na. В табл. 20.2 представлены значения коэффициента диффузии ионов Di при атмосферном давлении и нулевом электрическом поле.  [c.432]

Пьезоэлектрики — кристаллические диэлег.трики, не имеющие центра симметрии, в которых под действпе.м механических напряжений возникает электрическая поляризация (прямой пьезоэлектрический эффект), а под действием внешнего электрического поля — механическая деформация (обратный пьезоэлектрический эффект). Таким образом, с помощью пьезоэлектриков можно преобразовывать электрические сигналы в механические и наоборот. Между поверхностной плотностью заряда (/, образующегося при прямом пьезоэффекте на поверхности поляризованного кристалла, и механическим напряжением а существует прямо пропорциональная зависимость q = do, причем знаки зарядов на электродах пьезоэлемента зависят от направления механических напряжений (сжатие — растяжение). Механическая деформация и в такой же зависимости находится с напряженностью внешнего электрического поля Е при обратном пьезоэффекте u = dE, а характер деформации (сжатие или растяже-  [c.557]

Исследования взаимодействия упругих и температурных полей явились началом углубленного изучения и других сопряженных физических процессов и в первую очередь таких, как электроупругость и магнитоупругость. Интерес к сопряженным электроупругим процессам в сплошных средах связан с широким применением в различных областях техники устройств, работа которых основана на использовании явления пьезоэффекта. Открытый братьями Кюри пьезоэлектрический эффект состоит в том, что при деформировании некоторых анизотропных кристаллов на их поверхности появляются электрические заряды. Имеет место также и обратный пьезоэффект, который состоит в возникновении внутренних напряжений при действии электрического поля. Данное явление существенно связано с симметрией  [c.235]

Электропроводность а металла представляет собой коьффицнент пропорциональности между плотностью / текущего в металле электрического тока и напряженностью Е денстпующего электрического поля, т. е. а = = jlE. Под действием электрического поля электрон к моменту рассеяния приобретает скорость направленного движения  [c.459]


Развитие электроники, электроакустики, измерительной техники привело в последние юды к интенсивному развитию новых областей физики диэлектриков. Одно из таких направлений связано с изучением линейного взаимодействия электрических, механических и тепловых нолей при ньезо- и пироэлектрическом эффекте. В настоящее время существуют различные технические устройства, в которых успешно используется явление пьезоэффекта. Пьезоэлектрические л атериалы широко применяются в дефектоскопии, в электроакустических преобразователях, в радиотехнических устройствах типа резонаторов, полосовых фильтров, ультразвуковых линий задержки и т. д. Особое внимание исследователей к таким материалам, как пьезоэлектрики, связано с явлением пьезоэффекта, обнаруженным братьями Кюри в 1880 г. Это явление состоит в том, что при деформировании кристаллов некоторых кристаллографических классов на их поверхностях появляются электрические заряды, пропорциональные величине деформации. Термодинамический анализ показывает существование обратного эффекта, который проявляется в возникновении механических напряжений в кристалле при действии электрического поля. Характерной особенностью пьезоэффекта является его связь  [c.69]

В рабочей камере установки расположены электроды для создания и поддержания плазмы тлеющего разряда, держатели мишени распыляемого материала и подложек. Для получения гидрогенизированного аморфного кремния устанавливают на держатель мишень из кристаллического кремния, откачивают рабочую камеру, а затем заполняют ее смесью аргона и водорода до давления 1,3—0,1 Па. При подаче напряжения на электроды между ними возникает тлеющий разряд, газ ионизируется и его ионы под действием электрического поля бомбардируют мишень. Мишень распыляется и ее частицы  [c.16]

Наиболее часто встречающимся нидом релаксационной поляризации является дипольная поляризация, возникающая в полярных диэлектриках при слабых связях между молекулами. Молекулы полярных диэлектриков обладают собственным электрическим моментом, который не зависит от напряженности внешнего электрического поля. После включения поля наиболее вероятным направлением молекулярных дипольных моментов становится направление вектора напряженности электрического поля. Под действием флуктуаций теплового движения большинство дипольных моментов ориентируется в этом направлении. В равновесном состоянии молекулы-диполи не располагаются строго вдоль поля, так как этому мешает тепловое движение, а имеют лишь преимущественную ориентацию ВДОЛЬ ПОЛЯ.  [c.146]

Электрохимический пробой (электрическое старение) обусловлен медленными изменениями химического состава и структуры диэлектрика, которые развиваются под действием электрического поля или разрядов в окружающей среде. Время ра )нптия электрохимического пробоя составляет 10 — 10 с и называется временем жизни диэлектрика. С увеличением напряжения или температуры как правило, уменьшается Процесс электрохимического пробоя развивается в электрических полях, значительно меньших, чем электрическая прочность диэлектрика.  [c.171]

В УЗ дефектоскопии в качестве источников и приемников ультразвука используют материалы, обладающие пьезоэлектрическим эффектом, который заключается в появлении электрического заряда на гранях кристалла материала при приложении механического напряжения (прямой пьезоэффект). При воздействии механических колебаний на пластину из пьезоматериала (пьезопластину) между ее поверхностями возникает переменная электродвижущая сила. Существует и обратный пьезоэффект, заключающийся в деформации (изменении размеров) пластины под действием электрического поля. Характер деформации определяется полярностью приложенного напряжения если напряжение переменное, то размеры пластины изменйются с частотой приложенного поля. Таким образом, с помощью пьезопластины можно преобразовывать УЗ колебания в электрические и наоборот. Впервые пьезоэлектрические свойства были обнаружены у горного хрусталя — одной из разновидностей кварца.  [c.23]

Непрерывно, с определенной частотой активные области тончайшего слоя поверхности с образовавшейся рыхлой структурой вновь входят в контакт со сталью. Вследствие значительных термотоков при их благоприятной ориентации, а также высоких температур, обусловливающих высокую подвижность ионов меди, возрастает вероятность переноса меди на стальную поверхность с помощью электродиффузионного механизма. Механизм электропереноса заключается в направленной миграции ионов, образующих остов кристаллической решетки, под действием электрического поля, напряженность которого достигает значительной величины из-за высокой плотности тока на площадках фактического касания.  [c.42]

Сопротивление (/ , г) — свойство тел препятствовать движению зарядов под действием электрического поля. Практическая единица сопротивления — ом—есть сопротивление проводника, по которому протекает ток в а при приложении к его концам напряжения в 1 в. Сопротивлением в 1 ом обладает при О С столб ртути постоянного сечения длиной 106,3 см, имеющий массу 14,4521 г. Для измерения больших сопротивлений употребляются килоом, равный 1 ком = 10 ом, и мегом, равный 1 мгом = 10 ом.  [c.513]

При прохождении света через диэлектрическую среду под действием электрического поля световой волны происходит поляризация атомов или молекул. В слабых полях величина диполь-ного момента отдельного атома или молекулы пропорциональна напряженности электрического поля р = рЕ, где р — коэффициент поляризации атома. Дипольный момент единицы объема среды определяет поляризацию среды. Очевидно, что  [c.74]

СПЕКТРОСКОПИЯ — совокупность методов исследования строения вещества, основанных на резонансном поглощении радиоволн РАЗМАГНИЧИВАНИЕ — уменьшение остаточной намагниченности ферромагне1ика после снятия внешнего магнитного поля РАЗМЯГЧЕНИЕ — переход вещества из твердого состояния в жидкое при повышении температуры РАЗРЯД (безэлектродный вызывается либо током смещения, либо является индукционным током, а разрядный промежуток изолирован от электродов высокочастотный происходит в газе под действием электрического поля 1азовый — процесс прохождения электрического тока через газ дуговой — самостоятельный газовый разряд с большой плотностью тока, при котором основную роль в ионизации играют электроны, возникающие вследствие термоэлектронной эмиссии с разогретого самим разрядом катода, а газ в столбе дуги находится в состоянии плазмы при сравнительно небольшом напряжении между электродами)  [c.269]

ЭФФЕКТ [переключения — скачкообразный обратимый переход полупроводника из состояния с высоким сопротивлением в состояние с низким сопротивлением под действием электрического поля, напряженность которого превышает некоторое пороговое значение пьезоэлектрический < — возникновение электрических зарядов разного знака при деформации некоторых кристаллов обратный заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля) радиометрический состоит в обнаружении и измерении давления электромагнитных волн на твердые тела и газы Рамана см. РАССЕЯНИЕ света комбинационное стереоскопический — психофизиологическое явление слитного восприятия изображений, видимых правым и левым глазом стробоскопический — основанная на инерции зрения зрительная иллюзия непрерывного движения, возникающая при наблюдении движущегося предмета в течение коротких быстро следующих друг за другом промежутков времени теней — появление интенсивности в распределении частиц, вылетающих из узлов кристаллической решетки в направлениях кристаллографических осей и плоскостей тензорезистивиый — изменение электрического сопротивления твердого проводника при его деформации тепловой реакции — теплота, выделенная или поглощенная термодинамической системой при протекании в ней химической реакции при условии, что система не совершает никакой работы, кроме работы расширения, а температура продуктов реакции равна  [c.301]

Известно [Л. 131], что при наложении постоянного электрического поля высокой напряженности на дисперсии металлов или полупроводников в жидких диэлектриках возникают ориентированные структуры. Под действием электрического поля происходит агрегатирование частиц дисперсий и их организация в структуры, растущие вдоль силовых линий поля. Исследованиями установлено, что при напряженности поля больше критической происходит электрический пробой суспензий, после чего они из диэлектриков превращаются в металлические проводники электрического тока. При этом пробой обусловлен образованием проводящего мостика из частиц проводников или полупроводников. В указанных выше работах в качестве диэлектриков применялись вазелиновое масло, авиационный бензин, бензол, нитробензол, серный эфир и т. д. Исследовались суспензии алюминия, меди, платины, карбида бора, закиси меди. В более поздних работах [Л. 132] исследовалось формирование структур металлонаполненных полимерных композиций в электрическом поле. Образующиеся при этом токо-  [c.228]


Существуют вещества, в которых под действием магнитного поля возникает деформация. Такое явление называют магнитострикцией. Имеются также вещества, в которых под действием электрического поля возникает деформация. Это явление называют электрострищией. Деформация при магнитострикции или электрострик-ции находится в прямой зависимости от квадрата напряженности поля и не зависит от знака напряженности. Поэтому частота колебаний деформации вдвое больше частоты изменений поля, если поле знакопеременно. В этом проявляется так называемый эффект квадрирования.  [c.230]

Пьеэоэлектрики — вещества, у которых под действием механических напряжений возникает поляризация (прямой пьезоэффект) или под действием электрического поля изменяются размеры (обратный пьезоэффект). К пьезоэлектрикам относятся поляризованные сегнетоэлектрики с остаточной поляризацией, а также кристаллы, не имеющие центра симметрии. В основе пьезоэффекта лежит смещение ионов в кристаллической решетке при упругой деформации. Пьезоэффект анизотропен и характеризуется пьезомодулем — зарядом, который появляется на поверхности пластин пьезоэлектрика под действием единичной силы. Обычно измеряют так называемый продольный пьезомодуль 33 по заряду на поверхности, перпендикулярной направлению поляризации, когда нагрузка приложена перпендикулярно этой же поверхности. От пьезоэлектриков требуются высокие значения пьезомодуля и малые потери. Пьезомодули йзз у сегне-токерамики и пленки поливинидиленфторида [—СНг —СГг—] равны соответственно (2. .. 4)-10 и 3,5-10 Кл/Н, что на один-два порядка больше пьезомодулей кварца.  [c.607]


Смотреть страницы где упоминается термин Напряженность действующего электрического поля : [c.79]    [c.63]    [c.174]    [c.279]    [c.547]    [c.681]    [c.442]    [c.94]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.105 ]



ПОИСК



Действие на Напряженность

Напряженно

Напряженность

Напряженность действующего

Напряженность поля

Напряженность электрического поля

Ток электрический — Действие

Электрическое Напряженность

Электрическое поле

Электрическое поле. Напряженность поля



© 2025 Mash-xxl.info Реклама на сайте