Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стадия хрупкого разрушения

Все изложенное ранее приводит к необходимости создания инженерных методов расчета на хрупкую прочность элементов конструкций, содержащих трещины. Расчет на прочность по стадии хрупкого разрушения, дополняющий обычный расчет на прочность, признан способствовать мерам по защите конструкций от преждевременного хрупкого разрушения и устанавливать допуск на безопасные размеры начальных трещин.  [c.279]

Одним из наиболее простых способов предотвращения хрупкого разрушения является применение материала, вязкость которого после соответствующей термической обработки достаточна для предупреждения возникновения и развития трещины. Такой материал избавит от необходимости прибегать к специальным способам остановки трещин. Однако людям свойственно ошибаться, а материалы не всегда обладают нужными свойствами. Иногда не удается избежать ранних стадий хрупкого разрушения, поэтому необходимо прибегать к изысканию и применению способов и средств остановки трещин.  [c.38]


Испытания также показали, что сталь имела низкую пластичность (удлинение 1—2%) для этого периода эксплуатации. Под действием всех этих факторов, вероятно, возникали трещины в зоне отверстия, которые затем привели к последующим стадиям хрупкого разрушения.  [c.81]

Стадия хрупкого разрушения  [c.62]

После того как пуансон под действием внешней силы достигает некоторой критической глубины погружения, наступает стадия хрупкого разрушения материала (см. фиг. 38, в). Эта стадия сопровождается ударным характером опускания пуансона в матрицу и резким спадом усилия. Отмеченное обстоятельство особенно наглядно видно при рассмотрении осциллограмм процесса пробивки (фиг. 57).  [c.62]

Величина ударной вязкости состоит из работы, затрачиваемой на образование первой стадии хрупкого разрушения, на протекание второй стадии разрушения и на пластическую деформацию сжатого участка образца. Так как в различных сталях энергия, затрачиваемая на каждую из указанных стадий разрушения, может быть различна и соотношение между этими энергиями также может быть разное, нельзя быть уверенным в том, что получаемые при испытаниях данные дадут правильную сравнительную оценку исследуемых сталей.  [c.152]

Различают начальные стадии хрупкого разрушения, которые условно объединяют в понятие зарождение разрушения, и движение трещины, которое рассматривают как распространение разрушения. Используемые в машиностроении свариваемые конструкционные материалы в обычных условиях статического нагружения при отсутствии концентраторов напряжений не проявляют признаков хрупкости. Появлению трещины всегда предшествует заметная пластическая деформация. Признаки хрупкости могут проявиться при ударном приложении нагрузки. В ряде случаев хрупкость на гладких образцах даже при ударном приложении нагрузки появляется только при соответствующем понижении температуры. Тогда говорят о хладноломкости металлов. В большинстве случаев хрупкость наиболее сильно обнаруживается при наличии надрезов.  [c.144]

Кроме указанных закономерностей, из предложенного критерия зарождения хрупкого разрушения следует, что зарождение острых микротрещин (способных инициировать хрупкое разрушение) может наступать на более поздних стадиях деформирования, чем зарождение пор, контролирующих вязкое разрушение материала. Принципиальная возможность реализации указанной ситуации была показана в подразделе 2.1.2.2, где зарождение пор и острых микротрещин рассматривалось по дислокационным механизмам в матрице.  [c.109]

Процесс хрупкого разрушения может включать три этапа возникновение трещины, медленное (стабильное) ее развитие и лавинообразное (нестабильное) распространение разрушения. В зависимости от материала, геометрии изделия и условий нагружения продолжительность стадии медленного развития может быть различной либо совсем отсутствовать, либо быть весьма длительной. В последнем случае отдельные конструкции допускают к эксплуатации с трещиной или трещиноподобным дефектом при условии контроля за их медленным развитием и своевременного предупреждения лавинообразного разрушения. Для этого необходимо знание скорости медленного развития и критического размера трещины, свыше которого начинается ее нестабильное распространение.  [c.545]


Часто хрупкое разрушение конструкций происходит от катастрофического распространения трещин при средних напряжениях ниже предела текучести и кажущихся инженеру-конструктору безопасными. Подобные разрушения указывают на недостаточность классических методов расчета на прочность по упругому и пластическому состояниям. Они указывают на необходимость дополнения классических расчетов новыми методами на прочность, учитывающими законы зарождения и развития трещин, а также новые характеристики материала, оценивающие стадию разрушения.  [c.117]

Все вышеперечисленные методы дают качественную оценку технического состояния оборудования. При их проведении обнаруживаются объемные опасные дефекты, такие как трещины, подрезы, непровары, поры. Однако необходимо отметить, что появление таких дефектов является лишь заключительной стадией процессов, происходящих на микроуровне и сопровождающихся изменением характеристик прочности, пластичности и трещиностойкости. Одним из таких процессов является охрупчивание (деформационное упрочнение) материала, вызывающее повышение временного сопротивления Св, предела текучести Пг и снижение запаса пластичности, ударной вязкости и трещиностойкости. Это, в свою очередь, увеличивает вероятность хрупкого разрушения даже при температурах выше предела хладноломкости.  [c.337]

Развитие механики твердого тела на этих стадиях способствовало новой постановке вопросов сопротивления материалов, расчета прочности и долговечности элементов конструкций. Возникла вероятностная трактовка расчета на сопротивление усталости по признаку возникновения трещины, разработаны методы линейной механики разрушения для расчета на сопротивление хрупкому разрушению, методы расчета на сопротивление повторным пластическим деформациям в связи с явлениями усталости в пределах малого числа циклов. Эти методы все шире используются при проектировании высоконагруженных конструкций, они получают отражение в нормативных материалах промышленности.  [c.5]

Полосы деформации представляют собой последовательные положения внутризеренного фронта трещины после каждого цикла нагружения. По расстоянию между полосами можно судить о скорости распространения фронта трещины в тех случаях, когда они имеют правильное расположение (в железе, низкоуглеродистой стали, алюминиевых сплавах). Однако рассчитанная по расстоянию между полосами скорость распространения трещины не на всех стадиях роста трещин вполне соответствует скорости, полученной при усталостных испытаниях. Это связано с тем, что на каждый цикл фронт трещины продвигается не на одинаковое расстояние по всей длине. Наряду с усталостным происходит хрупкое разрушение с образованием плоских гладких участков и перлитных сколов, что приводит к быстрому локальному продвижению фронта трещины. Кроме того, на стадии быстрого роста возможно развитие боковых трещин.  [c.49]

Согласно теории временной прочности ( 1.14) при выдержке тела под напряжением в нем накапливаются дефекты, приводящие в конце концов к образованию трещин критического размера и наступлению стадии быстрого разрушения. Такое накопление дефектов происходит, в частности, при термоциклировании. Кроме того, могут возникать дополнительные внутренние напряжения из-га наличия градиента температуры внутри однородных областей структуры, Наконец, у таких материалов, как полимеры, в области низких температур возрастает модуль упругости и снижаются деформационные свойства вплоть до перехода их в хрупкое состояние.  [c.86]

Во многом под впечатлением именно этих взглядов позднее Я. Б. Фридманом была совершена попытка создания схемы, отражающей по возможности все основные факторы, влияющие на возникновение хрупкого разрушения или начала пластической деформации (текучести), а также на разрушение вследствие среза наступающего в конце пластической стадии работы материала.  [c.550]


Имеются две точки зрения по вопросу о выборе материала деталей и конструкций, для которых (вследствие наличия в них остаточных напряжений) существует опасность хрупкого разрушения. Так как процесс хрупкого разрушения имеет две стадии (стадию зарождения и стадию развития хрупкой трещины), то и борьба с этим разрушением может идти двояко либо по пути предупреждения его возникновения, либо по пути задержания распространения. Первый путь сводится к созданию так называемого барьера , для преодоления которого требуется больше энергии, чем на поддержание распространения зародившейся хрупкой трещины. Следовательно, чтобы создать более высокий барьер , необходимо применять сталь, наименее чувствительную к концентрации напряжений в виде надрезов. Второй путь сводится к применению таких металлов, которые обладают необходимым сопротивлением распространению хрупкой трещины, так как здесь полагают, что полностью избежать всех концентраций нельзя и всегда найдутся случайные причины образования первой хрупкой трещины. При решении вопроса о том, какой из этих двух путей более эффективен в каждом конкретном случае (т. е. что лучше применить более дорогую сталь, не допускающую распространения хрупкой трещины, или повысить требования к изготовлению конструкции из более дешевой стали), нужно исходить из экономической стороны вопроса.  [c.223]

В связи с рассмотренными особенностями деформирования и разрушения резьбовых соединений, работающих в широком диапазоне температур, важное значение может иметь температурный фактор, способствующий возникновению дополнительных деформаций ползучести, снижению усилий предварительного затяга п накоплению длительных статических и циклических повреждений. Оценка сопротивления малоцикловому разрушению резьбовых соединений при высоких температурах может быть осуществлена по критериям длительной циклической прочности (см. гл. 2, 4 и 11). Понижение температур эксплуатации приводит к возможности возникновения хрупких разрушений резьбовых соединений на ранних стадиях развития трещин малоциклового нагружения. Это требует изучения трещиностойкости конструкционных материалов (предназначенных для изготовления резьбовых соединений) с применением соответствующих критериев линейной и нелинейной механики разрушения [19, 12].  [c.211]

Особенность вязкого разрушения состоит в том, что весь процесс как бы разделяется на две стадии пластического деформирования и собственно разрушения. Эксперименты показали [106, 122, 127], что для одной и той же стали, при одинаковых образцах и условиях (температура, среда и т. п.) испытания, образцы с высокой и низкой ударной вязкостью имели одинаковый размер зерен, цвет и блеск изломов. Исследования с помощью электронных микроскопов выявили, что в образцах обоих видов имеются зоны пластического и хрупкого разрушения. Однако в изломах образцов с низкой ударной вязкостью зона хрупкого разрушения занимает более 50% площади. Неоднородность зерен также отрицательно сказывается на уровне ударной вязкости.  [c.12]

На стадии чистого шлифования применяют абразивный инструмент меньшей зернистости, в результате чего уменьшается хрупкое разрушение и начинают преобладать истирающее действие и пластичная деформация. Поверхность керамики выравнивается и становится пригодной для металлизации. Однако съем материала при этом снижается. Стадию доводки выполняют обычно алмазными шлифовальными пастами тонкой зернистости (см. табл. 11) в основном с истирающим действием. Поверхность керамики -доводят до класса точности 1—4.  [c.93]

Для обоснования условия зарождения микротрещин скола на пределе текучести обычно используют факт наличия микротрещин и микронесплошностей на самых ранних стадиях пластической деформации. В то же время анализ экспериментальных результатов, представленных схематически на рис. 2.6,6, а также проведенные нами исследования [2, 131] (см. также подраздел 2.1.4) показали, что зарождение микротрещин скола, приводящих к хрупкому разрушению, может происходить при напряжениях, существенно превышающих предел текучести. Для того чтобы разрешить это противоречие, ответим на вопрос условие зарождения каких микротрещин должно входить в критерий хрупкого разрушения Как уже обсуждалось, микротрещи-  [c.67]

В соответствии с кинетической концепцией С.Н. Журкова [21], процессом, ответственным за иременную зависимость прочности, является разрушение, связанное с термофлуктуационным разрывом межатомных связей. Это означает, что ведущим процессом является разрушение межатомных связей. В противоположность этому, в ряде работ высказана точка зрения, в соответствии с которой пластической деформации принадлежит ведущая роль как в случае вязкого, так и в случае хрупкого разрушения, так как оба вида разрушения различаются только по степени локализации пластической деформации вязкое после значительной равномерной деформации, а хрупкое - локализацией деформации на ранней стадии деформирования или в пределах деформации Лю-дерса.  [c.261]

В зависимости от сочетания различного рода неблагоприятных факторов при эксплуатации сварных конструкций имеют место вязкие, квазивязкие, хрупкие и квазихрупкие разрушения. Вязкие разрушения происходят в условиях общей текучести ослабленного дефектом сечения шва. Квазивязкие — когда большая часть ослабленного сечения сварного шва охвачена пластической деформацией, а остальная часть работает упруго. Хрупкие разрушения протекают при низком уровне приложенных напряжений на стадии упругой работы конструкций, а квазихрупкие — когда незначительная часть ослабленного сечения вблизи дефекта охвачена пластической деформацией. Термин квази в данном случае означает приближение к хрупкому либо вязкому разрушению,  [c.40]


Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

Наличие трещин в конструкциях и случаи их хрупкого разрушения, происходяпще при средних напряжениях ниже предела текучести (кажущихся ипженеру-копструктору безопасными), показали недостаточность классических методов расчета на прочность по упругому и пластическому состояниям. Возникла необходимость дополнить их новыми методами расчета на прочность, учитывающими законы зарождения и развития трещин, и новыми характеристиками материала, оценивающими стадию разрушения.  [c.19]

Фрактографической особенностью изломов элементов конструкций, возникающих при хрупком разрушении, является наличие более гладких поверхностей, отражающих начальное развитие трещин на первой стадии и более шероховатых — на второй стадии протекающего долома. На второй стадии на поверхности излома возникает рельеф в форме системы выступов, расположенных елкой, который называют шевронным . На рис. 1.12 представлены хрупкие изломы по резьбе болта М 20 из стали ЗОХГСА и кольца шарикоподшипника диаметром 60 мм из стали ШХ15.  [c.20]

Проектирование сварных заготовок производится с учетом обеспечения прочности (в частности, усталостной прочности, сопротивления хрупкому разрушению) и технологичности (см. п. 6.4) сварного соединения. На стадии проектированиу необходимо также  [c.155]

Если наша цель состоит в разработке критерия вязкого разрушения в столь же общем виде, как и используемый критерий Гриффитса при хрупком разрушении, то эта цель пока еще не достигнута. Причина состоит в том, что простые модели, которые могут быть описаны теоретически, не соответствуют действительным сложным условиям. Мак-Клинток [62] отметил, что критерий хрупкого разрушения связан только с текущим напряженным состоянием, тогда как при вязком разрыве размеры пустот и их взаимодействие зависят от всей истории изменения напряжений и деформаций образца. Расчет требует количественной оценки каждой из следующих трех стадий возникновение, рост и слияние пор. Дислокационные представления пригодны главным образом для первой стадии, для второй и третьей стадий в связи с большими деформациями необходимы теории пластичности сплошной среды. Эти теории основываются на специальных моделях роста пустот, а критерии разрушения связываются с их слиянием.  [c.76]

Необходимо учитывать двухстадийность процесса хрупкого разрушения вязкое, начальное развитие трещины, пока в ее устье напряжение не достигнет необходимого уровня хрупкое, окончательное разрушение. Первая стадия рассматривается как стабильное развитие трещины (длина стабильной трещины Сет характеризует сопротивление материала хрупкому разрушению), вторая — как нестабильное.  [c.27]

Рассмотренная теория прочности, исходящая из уравнения (1.48), описывает по существу конечную стадию разрушения, на которой в теле уже возникли трещины, способные привести к хрупкому разрушению. Не менее важными являются, однако, и начальные стадии развития процесса разрушения, на которых происходит зарождение и рост трещин до критических размеров Этот процесс протекает более или менее постепенно и для своего завершения требует определенного времени т. Это время, необходимое для развития процесса разрушения от момента нагрунГения тела до момента его разрыва, называется временной прочностью или долговечностью материала.  [c.57]

Установлено, что стадию распространения трещины от зарождения до полного разрушения образца или детали можно разделить на три характерных этапа, различающихся механизмом ее роста. Первый этап характеризуется небольшой скоростью, так как трещина еще мала, а ее продвижение происходит преимущественно вдоль полос скольжения. Основную часть составляет второй этап, когда трещина растет с примерно постоянной скоростью в направлении, перпендикулярном наи-больщим нормальным напряжениям. На третьем этане, когда трещина имеет уже достаточно большие размеры, скорость ее роста быстро увеличивается, и происходит практически мгновенное хрупкое разрушение (долом).  [c.7]

При упругопластической деформации материалов под действием приложенного напряжения хрупкое разрушение поли-кристалического материала происходит в три стадии разрыв межатомных связей с образованием новых поверхностей— зарождение микротрещины подрастание последней  [c.22]

В связи с этим оценка склонности реакторных сталей к хрупкому разрушению по результатам испытаний стандартных образцов на ударную вязкость принималась необходимой, но недостаточной для предотвращения опасности хрупкого разрушения. В конце 50-х-начале 60-х годов в СССР, США и Англии были проведены испыгания крупногабаритных образцов толщиной от 50 до 250 мм и шириной от 200 до 1200 мм [2, 7, 14, 16]. Эти образцы имели острые надрезы типа дефектов и трещин, сварные швы часть образцов подвергалась предварительному деформационному старению. Для испытаний таких образцов были использованы уникальные установки с предельными усилиями от 1500 до 8000 тс (15-80 МН), По результатам проведенных испьпаний была определена область критических состояний, характеризуемых резким уменьшением прочности и пластичности реакторных сталей как для стадаи возникновения, так и для стадии развития хрупких трещин. В последнем случае при температурах ниже критических разрушающие напряжения оказывались весьма низкими (0,05-0,15 от предела текучести). При наличии высоких остаточных напряжений от сварки разрушения крупногабаритных образцов с дефектами также происходили при низких номинальных напряжениях от нагрузки. Этими оп<,пными данными была обоснована необходимость расчета прочности атомных реакторов [5] по критическим температурам хрупкости и разрушающим напряжениям кр хрупких состояниях с введением запасов [ДГ] и кр соответственно, а также важность проведения термической обработки для снятия остаточных напряжений.  [c.39]


Процесс хрупкого разрушения металлов состоит из двух стадий возникновения трещин и их распространения. Возникновению субмикро- и микротрещин может способствовать наличие в металле концентраторов напряжений, обусловленный неоднородным распределением дефектов решетки (в первую очередь дислокаций).  [c.118]

Значения кр1 Для других зон сварного соединения 10Г2С1 -f - - 22ХЗМ, за исключением материала рулона и поковки, также находятся в области положительных температур. Следует отметить, что величины кр1 характеризуют уровень сопротивления металла сварного соединения хрупкому разрушению на стадии изготовления РСВД без учета возможного смещения значений <кр1 под влиянием эксплуатационных параметров (длительного воздействия повышенных температур, цикличности нагрузки и др.).  [c.369]

На разных стадиях шлифования характер разрушения поверхности керамики различен. Так, при черновом алмазном шлифовании преобладает хрупкое разрушение. Наблюдаются два вида такого разрушения первый — это раскалывание в результате прижимающего усилия абразивного инструмента, второй — это отрыв (выкрашивание) отдельных кристаллов (зерен) от связ1ующей фазы под действием тангенциальных сил, возникающих при относительном передвижении керамики и абразива. Под действием этих сил происходит частичное истирание алмаза и возможен скол или затупление его углов или граней. После черновой обработки на поверхности остаются дефекты (царапины, сколы), число которых зависит от размера, формы и свойств алмазного зерна.  [c.93]


Смотреть страницы где упоминается термин Стадия хрупкого разрушения : [c.31]    [c.57]    [c.59]    [c.430]    [c.117]    [c.181]    [c.206]    [c.164]    [c.514]    [c.133]    [c.560]    [c.222]    [c.39]    [c.181]    [c.122]   
Смотреть главы в:

Технология штамповки неметаллических материалов  -> Стадия хрупкого разрушения



ПОИСК



Изн стадии

Разрушение хрупкое

Разрушение — Время 358 — Стадия хрупкое

Разрушения стадии



© 2025 Mash-xxl.info Реклама на сайте