Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение — Время 358 — Стадия распространения

Наиболее старым и весьма распространенным является энергетический подход, который обычно не требует уточнения конкретной ситуации (напряжений и деформаций) в очаге разрушения. Энергетический подход используют для оценки общей работы разрушения и ее составляющих, связанных с зарождением и распространением трещины. В то же время силовой и деформационный подходы используют преимущественно для оценки сопротивления разрушению на стадии распространения трещины.  [c.326]


В настоящее время наблюдается прогресс в построении теорий объемного разрушения [111, 167, 178]. При применении этих теорий для расчета изделий в условиях неоднородного напряженного состояния должны быть использованы такие понятия, как фронт разрушения или условия зарождения магистральной трещины [85]. Данные о соотношении времени инкубационного периода и времени прорастания трещины для различных материалов противоречивы. В ряде работ показано, что время заключительной стадии меньше инкубационного периода [139, 169]. Как отмечено в [143], вопрос о переходе рассеянного разрушения в стадию распространения магистральной трещины в настоящее время не может считаться удовлетворительно решенным ни в физическом, ни в механическом смысле.  [c.270]

Рассмотренные закономерности малоциклового и длительного циклического деформирования и разрушения относятся к стадии до момента образования усталостной трещины. Вместе с тем в ряде случаев важным при обеспечении требуемой долговечности является эксплуатация конструкции на стадии распространения малоцикловой трещины. Названные вопросы в настоящее время интенсивно развиваются на основе подходов механики упругопластического разрушения. Переход к расчетам на стадии распространения трещин, внедрение в практику методов оценки выработки ресурса позволят выполнять контроль прочности ответственных конструкций по состоянию в эксплуатации.  [c.277]

В настоящее время особенно актуальны вопросы усталости и живучести материалов, предназначенных для Крайнего Севера. При исследовании процессов, происходящих при циклических нагрузках, с точки зрения обеспечения надежности материалов особый интерес представляет последняя стадия усталостного разрушения — стадия распространения трещин. Эти исследования можно проводить только на достаточно массивных образцах.  [c.39]

В последнее время в связи с развитием методов расчета остаточного ресурса конструкций внимание к этой характеристике заметно возросло. Для определения сопротивления хрупкому разрушению получил распространение параметр - наименьшее значение разрушающего напряжения, при котором происходит переход зародышевой трещины хрупкого транскристаллитного скола в лавинную стадию распространения хрупких трещин. Фундаментальность характеристики обусловлена тем, что она инвариантна по отношению к виду напряженного состояния, скорости деформирования.  [c.81]

Разрушение в условиях отсутствия стадии ускоренной ползучести также является довольно распространенной. Такое поведение наблюдается у материалов, сравнительно малопластичных при температуре испытания, цилиндрические образцы из которых разрушаются во время стадии // при сложном напряженном состоянии, характеризуемом высокой жесткостью у при нагружении сжатием при растяжении тонколистовых и трубчатых  [c.91]


Другие методики, получившие в настоящее время широкое признание, состоят в определении Ткр образцов с предварительно нанесенной трещиной или в получении количественных данных о распространении трещины на определенной стадии эксперимента. С точки зрения разработки конструкционных материалов,— это более реалистичные способы описания разрушения, поскольку лишь очень немногие конструкции на практике не имеют царапин,  [c.50]

Исследования критериев малоциклового разрушения при повышенных и высоких температурах ведутся в последнее время весьма интенсивно, о чем свидетельствует большое количество различных предложений, посвященных выбору физически обоснованной меры повреждаемости материала в процессе эксплуатации и разработке соответствующих кинетических зависимостей, позволяющих оценивать остаточный ресурс конструкций в связи с параметрами процессов нагружения и нагрева. Существующие опытные данные указывают на значительную сложность физических процессов, приводящих к разрушению материала при высокотемпературном циклическом нагружении. Взаимодействие стадий образования и подрастания микропор и микротрещин в процессе пластического деформирования, слияния микротрещин, образования и распространения макротрещины подчиняется сложным статистическим закономерностям и не получило до настоящего времени исчерпывающего теоретического описания. Поэтому практически все существующие модели накопления повреждений базируются, как правило, на феноменологических представлениях. При этом оценку накопленных в процессе деформирования повреждении осуществляют, используя различные скалярные и тензорные параметры [18—201 (эффект Баушингера, длина траектории пластического деформирования, изменение плотности и т. п.), являющиеся макроскопическими (механическими) характеристиками явлений, определяющих на структурном уровне накопление и перераспределение поврежденности материала.  [c.16]

При рассмотрении вопроса о том, какое механическое свойство поверхностного слоя материала в наибольшей мере характеризует сопротивление усталостному разрушению, очевидно, предпочтение надо отдать пределу текучести. Как на стадии зарождения, так и при распространении усталостной трещины происходит пластическая деформация материала. В очень хрупких материалах, например стеклах, усталости не наблюдается [1231. Это значит, что во время усталостных испытаний хрупкий образец или разрушается сразу при увеличении  [c.96]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


Система записи усилие — время рекомендуется для широкого практического использования при оценке качества металлоконструкций, поскольку в этом случае удается экспериментально разделить процесс разрушения при ударе на стадию возникновения трещины и стадию ее распространения, а также определить продолжительность и скорость отдельных процессов при разруш ии.  [c.119]

Холодные трещины являются довольно распространенным дефектом. Для них характерно замедленное развитие в начальной стадии. Обычно они зарождаются спустя некоторое время после сварки и, достигнув некоторой критической длины, могут расти с огромной скоростью. Скорость роста на заключительном этапе разрушения определяется величиной действующего напряжения, температурой, скоростью нагружения. Наибольшие значения скорости роста трещин достигаются  [c.238]

Теории объемного разрушения при использовании их для расчета изделий должны содержать условие зарождения магистральной трещины. Данные о соответствии времен инкубационного периода и времени прорастания трещин для разных материалов противоречивы. По-видимому, это соотношение может изменяться в широких пределах. Расчеты [139], проведенные в предположении, что возникновение и распространение трещины обусловлено номинальными напряжениями, перераспределяющимися в процессе разрушения, дают время заключительной стадии меньше инкубационного периода.  [c.267]

В растворах хлоридов, бромидов и иодидов в метаноле технически чистый титан подвергается коррозионному растрескиванию, если в спирте содержится недостаточное количество воды. При этом не имеет значения, находятся ли галогены в виде кислоты [439], соли [440] или в элементарной форме [441]. На рис. 4.37 представлены зависимости долговечности титана от содержания воды и соляной кислоты в метаноле. Видно,что в случае достаточно низкого содержания воды уже при 10 н. НС1 происходит растрескивание титана. Повышение содержания воды увеличивает время до растрескивания, а увеличение содержания соляной кислоты уменьшает его. Коррозионное разрушение возникает легче всего в спиртах с наименьшей молекулярной массой. Если метанол заменяют другим спиртом, то долговечность образцов линейно возрастает с ростом вязкости спирта (рис. 4.38). Если допустить, что долговечность примерно характеризует обратную величину скорости распространения трещины, то тогда можно предположить, что скорость распространения трещины определяется диффузией компонентов реакции в спирте. По этим представлениям спирт является инертным растворителем. Следует отметить, что до сих пор не установлено, в какой степени долговечность определяется инкубационным периодом, а в какой — непосредственно стадией распространения трещины. До сих пор также не обнаружены химические соединения титана со спиртами, которые образовывались бы в процессе растрескивания. Установлено только, что титан, осажденный в вакууме на стекло, реагирует с парами метанола. Эта реакция сильно катализируется НС1 [443]. Известно, что время до растрескивания титана уменьшается с повышением температуры.  [c.169]

В настоящее время широкое распространение получила концепция усталостного разрушения металла, базирующаяся на дислокационной теории. Дислокации представляют линейные дефекты кристаллических решеток. Образования и развитие дислокаций представляют собой пластические деформации. Особенности и дефекты структуры металла (границы зерен, инородные атомы, неметаллические включения) препятствуют движению дислокаций и являются центрами их скопления. Скопление дислокаций ведет сначала к упрочнению, а затем к разрыхлению металла, т. е. образованию микротрещин. Имеется несколько дислокационных схем зарождения трещин. На базе микротрещин образуются макротрещины, приводящие к отслаиванию кусков металла, т. е. к питтингообразованию. Правда, практических попыток создания на этой базе нового метода расчета подшипников на контактную выносливость пока нет. До настоящего времени еще окончательно не решен вопрос о наиболее приемлемой теории усталостной выносливости деталей подшипников. Работами А. И. Петрусевича [153], Д. С. Коднира [84] и других исследователей показано значительное влияние гидродинамического эффекта на работу подшипников. Однако применительно к подшипникам качения эти работы находятся еще в начальной стадии.  [c.65]

Исследования по формированию волны в трубе подробно описаны в работе [2], где указывается, что минимальное время раскрытия диафрагмы, которое авторам удавалось наблюдать, составляет 100 мксек. Диафрагма, как правило, перед разрушением искривляется, и поэтому в канале возникают в первый момент искривленные волны, которые, отражаясь от стенок трубы, порождают систему поперечных волн. Наличие этих волн фиксируется теплеровскими фотографиями процесса. Авторы работы [3] находят причину появления поперечных волн в эффектах, связанных с пограничным слоем. Поперечные волны в канале на ранних стадиях распространения волны и формирующуюся волну мы регистрировали в наших опытах. На рис. 1 представлена картина течения в трубе на расстоянии двух калибров от места установки диафрагмы. Структура сверхзвукового потока в ударной трубе видна на рис. 2. Контактная поверхность не плоская, за ее поверхностью поток очень неоднородный.  [c.80]

В периоде распространения трешцн (от начала шейкообразования до окончательного разрушения материала) при статическом растяжении также можно выделить ряд стадий. В настоящее время показано, что процесс шейкообразования связан с развитием дисклинационных (поворотных) мод пластической деформации, образованием ячеистой структуры с плотностью дислокаций (3-7) 10 м и зарождением пор на стенках дислокационных ячеек.  [c.16]


Обычная коррозионная стойкость материала не является показательной в отношении склонности его к коррозионному растрескиванию. Известно, например, что высокопрочные деформируемые сплавы системы А1—Zn—Mg при хорошей общей коррозионной стойкости обладают высокой чувствительностью к КПН, особенно в зоне сварных соединений, что затрудняет их применение [64]. Углеродистые и малолегированные стали весьма стойки к общей коррозии в щелочной среде при повышенных температурах, в то же время они склонны к КПН в этих средах. Наоборот, многие магниевые сплавы, весьма чувствительные к общей коррозии, не проявляют существенной склонности к разрушению типа КПН, то же можно сказать о широко распространенном алюминиевом сплаве АК4 и др. Вместе с тем каверны, язвы и другие коррозионные повреждения, являясь концентраторами напряжений, часто служат очагами коррозионного растрескивания. Если материал склонен и к общей коррозии, и к КПН, трудно разделить эти два процесса как в начальной стадии, так и при развитии разрушения. Так, коррозионное растрескивание титановых сплавов ВТ6, ВТ 14 (термоупрочненного)  [c.73]

Начиная с некоторой стадии ползучести, основным механизмом разупрочнения материала становится процесс образования и развития трещин [41]. Время возникновения макротрещин и кинетика их развития, скорость и характер распространения, количество, последовательность возникновения определяются помимо структуры материала уровнем температуры и напряжения. Повышение напряжения уменьшает относительное (как доля от общей долговечности) время жизни образца с трещиной Ттр-Так, относительное время жизни образцов от момента образования трещины протяженностью 0,01 мм до полного разрушения в высокожаропрочном деформируемом никелевом сплаве ЖС6КП при температуре испытания 980°С составляло при напряжениях 0,16, 0,18, 0,19, 0,20, ГН/м 60, 36, 28, 22% соответственно.  [c.85]

Однако ситуация может измениться, если рассматриваются реальные сплавы, содержащие упрочняющие частицы. Так, из работы [5] следует, что в серии различно ориентированных монокристаллов аустенитной стали в большинстве случаев наблюдались плоские поверхности разрушения, в то время как условия их образования для монокристаллов ферритной стали оказались более жесткими. Сказанное относится ко второй стадии развития трещин усталости, когда механизм пластичных бороздок является основным механизмом роста трещины, а первая стадия занимает лишь фазу зарождения в общем процессе разрушения. Монокристаллы сплава на никелевой основе, упрочненные у -фазой, проявили склонность к распространению трещины целиком на первой стадии (на цилиндрических образцах при пульсирующем растяжении) [6, 7J. В этом случае механизм понере-менного скольжения при раскрытии трещины вообще не реализовался.  [c.147]

В настоящее время применяются различные методы исследо-ванря развития усталостного разрушения. Известен, например, метод, предусматривающий статическое доламывание образцов на различных стадиях развития трещины. Этот метод дает возможность исследовать закономерности убывания площади поперечного сечения образца по мере роста трещины, но требует испытания большого кoличe твa образцов [4]. Получили-распространение рентгеноскопические и электронноскопические методы с применением реплик и микрофотографии. Эти методы характеризуются достаточно высокой точностью, но требуют остановки машины для каждого наблюдения, что нарушает режим испытания и снижает точность получаемых результатов. Метод микрофотографии в сочетании со стробоскопическим освещением поверхности образца дает возможность не только фиксировать на фотопленке необходимые стадии разрушения, но и осуществлять визуальные наблюдения за ростом трещины без остановки машины [14, 16, 17].  [c.183]

Метод испытания на ударный изгиб постоянно совершенствуется. При оборудовании маятникового копра высокочувствительной записывающей и регистрирующей аппаратурой записывается полный процесс разрушения образца в координатах усилие - время или усилие-прогиб (например, ПСВО-1000 или ПСВО-30). В этом случае .удается экспериментально разделить процесс разрушения при ударе на стадию возникновения трещины и стадию ее распространения определить максимальную нагрузку характеризующую способность материала сопротивляться динамическому приложению нагрузки, при которой начинается хрупкое распространение трещины. В этом случае определяется средняя скорость распространения трещины.  [c.24]

По-видимому, рост трещины во втором периоде происходит путем последовательного продвижения вершины трещины в течение каждого цикла нагружения. При этом предположено, что характфная поверхностная полосчатость является признаком плоскодеформиро-ванного напряженного состояния в области/непосредственно примыкающей к вершине трещины [181, 182]. В работе [183] показано, что относительная долговечность распространения трещины (вторая стадия) увеличивалась, в то время как общая долговечность уменьшалась. Экспериментальные данные, представленные на рис. 48, пока зывают, что при долговечности до разрушения 10 циклов половина долговечности затрачивается на распространение трещины (вторая стадия).  [c.146]

ВОДИЛИ для каждого образца с помощью двойного микроскопа типа МИС-11. Определяли высоту неровностей профиля по десяти точкам R . Шероховатость поверхности металла принадлежит к числу наиболее значащих факторов, определяющих стадию зарождения коррозионных трещин. Для выяснения степени влияния неоднородности шероховатости поверхности сварного соединения на его сопротивляемость коррозионному растрескиванию, а также для оценки влияния на указанный параметр качества поверхностей, нашедших наиболее широкое распространение в машиностроении, проводились испытания двух типов на стандартных плоских образцах, в 3 %-ном растворе Na l, фиксировалось время до появления трещин больших 0,5 мм для круглых образцов в сероводородсодер-жашей среде в условиях испытаний, соответствующих методике NA E ТМ-01—77 [115], фиксировалось время до разрушения образца. Уровень растягивающих напряжений составил  [c.92]

Период распространения трещин (от начала шейкообразова-ния до окончательного разрушения материала) при статическом растяжении пластичных металлов и сплавов также можно разделить на ряд стадий. В настоящее время показано, что процесс шейкообразования связан с развитием дисклинационных (поворотных) мод пластической деформации [31-33], образованием ячеистой структуры с плотностью дислокаций (3-7) 10 м [34] и зарождением пор на стенках дислокационных ячеек и границах раздела включение-основной металл. Рост пор и их последующее объединение происходит в условиях интенсивной пластической деформации и сопровождается в а-Ре появлением значительного количества микродвойников длиной 100-200 А и шири-  [c.42]

Полный процесс коррозии под напряжением может быть разделен на три стадии инкубациоииый период зарождение трещины в местах коррозионных поражений, образующихся во время инкубационного периода распространение трещин до полного разрушения материала [3, 6]. Инкубационный период имеет различную относительную продолжительность и составляет основную долю от т,ф [16]. На этой стадии процесса наблюдаются исбольшие потери прочности за счет протекания коррозионных реакций на поверхиости металла.  [c.257]



Смотреть страницы где упоминается термин Разрушение — Время 358 — Стадия распространения : [c.40]    [c.8]    [c.193]    [c.288]    [c.14]    [c.123]    [c.106]    [c.113]    [c.281]    [c.303]   
Прикладная теория пластичности и ползучести (1975) -- [ c.361 ]



ПОИСК



Время до разрушения

Изн стадии

Разрушение — Время 358 — Стадия

Разрушения стадии



© 2025 Mash-xxl.info Реклама на сайте