Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель в жаростойких сплавах

Хром применяется в жаростойких сплавах в количестве 2—35 /о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома.  [c.669]


Сплавы никеля и кобальта с молибденом являются основой ряда кислотоупорных и жаростойких сплавов. В состав этих сплавов часто входит хром, который повышает коррозионную стойкость и в особенности жаростойкость сплавов (табл. 28).  [c.467]

Никель, наряду с хромом, оказывает положительное влияние на жаростойкость сплавов. Правда, улучшающее влияние никеля особенно хорошо сказывается при введении его в достаточно больших количествах. С увеличением содержания никеля жаростойкость сплавов повышается, причем сталь с 25% Сг и 20% Ni имеет меньшую жаростойкость, чем сплав с 80% Ni и 20% Сг (см. рис. 23).  [c.221]

Жаростойкие сплавы на основе никеля в окислительных средах (парах воды, кислороде, синтетическом ам- миаке) более стойки, чем на основе железа. Однако в серосодержащих ере-дах никель нестоек к газовой корро-зии. Присутствие серы в окислитель-ных средах снижает температуру применения никелевых сплавов до 550 С, а в восстановительных — до 260 °с  [c.414]

В качестве материалов матриц при изготовлении МКМ применяют освоенные промышленностью металлы и сплавы, а также сплавы, создаваемые специально для получения МКМ. В зависимости от требуемых эксплуатационных свойств применяют следующие материалы легкие металлы и сплавы на основе алюминия и магния сплавы на основе титана, меди жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта тугоплавкие сплавы на основе вольфрама, молибдена и ниобия.  [c.464]

Жаропрочные и жаростойкие сплавы получают на основе системы никель - хром с легирующими добавками вольфрама, молибдена, титана, алюминия. Они стойки к образованию окалины на поверхности в газовых средах при нагреве свыше 500 °С. Повышенная длительная прочность, высокое сопротивление ползучести и усталости достигаются за счет введения в сплавы  [c.464]

Никель и его сплавы благодаря высокой коррозионной стойкости, жаропрочности и жаростойкости находят широкое применение в химической и нефтехимической промышленности, энергетике.  [c.435]

В Советском Союзе выпускаются сотни марок жаропрочных и жаростойких аустенитных сталей и сплавов, т. е. материалов, сохраняющих при комнатной температуре структуру у-твердого раствора. Основу аустенитной стали составляет железо (более 45%). Содержание легирующих элементов, важнейшими из которых являются хром и никель, в аустенитных сталях не превышает 55%. Если же сумма легирующих элементов превышает 55%, то речь идет уже не о сталях, а аустенитных сплавах.  [c.7]


Отмечается большая разница во влиянии азота на свойства низколегированных сталей и высоколегированных нержавеющих и жаростойких. В высоколегированных сталях он обладает значительной растворимостью и образует стойкие нитриды, особенно в присутствии титана, ниобия и некоторых других элементов. Растворимость азота в расплавленных железохромоникелевых сплавах зависит от содержания хрома и никеля, что хорошо видно из данных, приведенных на рис. 111. Растворимость азота в расплавленной стали определяли при 1600° С. Как видно, хром способствует повышению растворимости азота в его сплавах с железом, 192  [c.192]

Никель наряду с хромом оказывает положительное влияние на жаростойкость сплавов. Правда, улучшающее влияние никеля особенно хорошо сказывается при введении его в достаточно больших количествах.  [c.653]

Изучение влияния хрома и никеля в стали 16-25-6 Мо на сопротивление ускоренному окислению позволило установить, что повышение содержания хрома и никеля оказывает благоприятное влияние. Повышение содержания углерода несколько улучшает также жаростойкость этих сталей. В сплавах на никелевой основе молибден оказывает меньшее влияние на понижение стойкости против окисления, чем в сплавах на железной основе.  [c.660]

В качестве матрицы в этих материалах используют никель и его сплавы с хромом ( 20 %) со структурой твердых растворов. Сплавы с хромоникелевой матрицей обладают более высокой жаростойкостью. Упрочни-телями служат частицы оксидов тория, гафния и др. Временное сопротивление в зависимости от объемного содержания упрочняющей фазы изменяется по кривой с максимумом. Наибольшее упрочнение достигается при 3,5 - 4 % НЮ2 (<Тв = 750. .. 850 МПа (т / рд) = 9. .. 10 км й = 8. .. 12 %). Легирование никелевой матрицы W, Ti, А1, обладающими переменной растворимостью в никеле, дополнительно упрочняет материалы в результате дисперсионного твердения матрицы, происходящего в процессе охлаждения с температур спекания. Методы получения этих материалов довольно сложны. Они сводятся к смешиванию порошков металлического хрома и легирующих элементов с заранее приготовленным (методом химического осаждения) порошком никеля, содержащим дисперсный оксид гафния или другого элемента. После холодного прессования смеси порошков проводят горячую экструзию брикетов.  [c.443]

А) Жаростойкий сплав на основе никеля. Используется для изготовления нагревательных элементов. В) Диэлектрический материал. Используется для изготовления электроизоляторов. С) Железоникелевый сплав с высокой магнитной проницаемостью. Используется в слаботочной технике. D) Высокохромистый инструментальный материал. Используется для изготовления штампового инструмента.  [c.130]

Применение составов № 14 и 15 вместо никеля в жаростойких сплавах показало удовлетворительные результаты при температуре 500° С (под печи из состава № 14). Чугун кральфер состава № 15 [30] после прокаливания в течение 38 час. при температуре 950° С увеличился в объёме на 1,3% (при тех же условиях силал увеличился на 1,5%, а обычный серый чугун — на 24%) [31]. К этой же группе Чугунов относится состав № 16 — чу-галь [20].  [c.55]

Алюминий значительно изменяет термоэлектрические свойства никеля, повышает его электросопротивление, жаростойкость и существенно понижает температуру магнитного превращения никеля. Кремний главным образом повышает жаростойкость никеля. Марганец увеличивает его электросопротивление и жаростойкость, особенно в серосодержащей атмосфере. Хром в сильной степени повышает жаростойкость и жаропрочность никеля, увеличивает электросопротивление и снижает ТКС никеля. Медь повышает коррозионную стойкость и прочность никеля. Сплавы никеля с медью превосходят по коррозионной стойкости никель и медь. Сплав никеля с 30% меди монель отличается наИ лее в лсокой устойчивостью на воздухе, в пресной и морской воде и многих агрессивных средах. Железо снижает тем- пературный коэффициент линейного расширения никеля. Им можно частично заменить никель в жаростойких сплавах.  [c.455]

В работах Института металлургии и материаловедения им. А. А. Байкова (ИМЕТ) показано, что есть по крайней мере два пути преодоления указанных причин деградации композитов типа W/Ni-суперсплав замена активной к вольфраму матрицы на Ni-основе на менее активную матрицу на основе другого металла понижение активности никеля в Ni-сплаве за счет его связывания в термически стабильные соединения. Анализ двойных и тройных диаграмм состояния с участием вольфрама и металлов, являющихся основой жаропрочных или жаростойких сплавов, включая никелевые, показал, что возможно использование нескольких типов металлических или интерметаллидных матриц, упрочненных волокнами из высокопрочных вольфрамовых сплавов. Так, благоприятной основой для жаростойкой матрицы являются сплавы хрома, поскольку в системе W—Сг отсутствуют интерметаллиды, имеется широкая область сосуществования двух твердых растворов (на основе хрома и на основе вольфрама), что исключает активное взаимодействие W-волокна с Сг-матрицей по крайней мере до 1400 °С. На границе волокно—матрица возникает тонкий термически стабильный промежуточный слой из двух находящихся в равновесии твердых растворов W—Сг, ширина которого на порядок ниже ширины реакционной зоны в композитах с Ni( o, Ре)-матрицами. Кроме того, в отличие от композитов W/Ni в композитах W/ r отсутствуют приповерхностные зоны рекристаллизации W-волокна, так как хром не является поверхностно-активным к вольфраму. Благодаря этому W-волокно в Сг-матрице остается нерекристал-лизованным вплоть до 1400 °С.  [c.216]


Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Алюминий вводят в жаропрочные и жаростойкие сплавы на основе железа и никеля. Его присутствие в не льших количествах в конструкционных и инструментальных сталях положительно влияет на прочностные и эксплуатационные свойства деталей.  [c.68]

Среди сплавов высокого сопротивления, которые, помимо нихрома, широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Они относятся к системе Fe—Сг—А1 и содержат в своем составе 0,7 %марганца, 0,6% никеля, 12—15% хрома 3,5—5,5 % алюминия и остальное — железо. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах. Имеют удовлетворительные технологические свойства и хорошие механические характеристики (табл. 4.4), что позволяет достаточно легко получать из чих проволоку, ленты, прутки и другие полуфабрикаты, которые способны свариваться и выдерживать большие механические нагрузки при высокой температуре без существенных деформаций.  [c.128]

Сцособность металла-наполнителя образовывать адсорбционные слои была использована при разработке жаростойких покрытий для защиты никеля и его сплавов. В целях торможения явлений смачивания и получения более полного расслоения вся работа проводилась в вакууме.  [c.143]

Испытания сплавов при 1100 и 1200 С в отличие от испытаний и[ш 900 Т. выявили различия в жаростойкости исследованных сплавов. Из сравнения кинетических швисимостей изменения удельной массы образцов из сплавов иа основе никеля с 20 /о Со и без Со (рие. 2) установлено положительное влияние кобальта на жаростойкость сплавов при 1200 С в условиях циклических и изотермических испытаний. Образцы из сплава е 20 % Со имели плотную, без отслоений оксидную пленку.  [c.177]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Введение хрома в никель и его сплавы сильно повышает их окалиностойкост при высоких температурах (см. рис. 27). Максимум стойкости против окисления в сплавах никель—хром соответствует наличию в них около 40% Сг. Металлический Ni и Сг в отдельности имеют значительно меньшую жаростойкость, чем нихромовые сплавы. Присадка хрома к никелю, значительно улучшая стойкость сплавов в окислительных средах, не так эффективна в среде топочных газов, содержащих серу.  [c.222]

Алюминий, присаживаемый к никелю и никельхромовым сплавам, повышает сопротивление окислению. Наиболее высокую окалиностойкость имеет сплав (ЭИ652) с 27% Сг и 3% А1 (см. рис. 27). Вольфрам и молибден несколько ухудшают жаростойкость никеля и нихрома, но их отрицательное влияние в этих сплавах значительно меньше, чем в сплавах с железом. Весьма характерной особенностью является то, что при окислении сплавов с высоким содержанием Мо не обнаружено летучей окиси молибдена, как это имеет место у никельхромистых сталей.  [c.222]

Литейные свойства хорошие, но для получения плотного литья рекомендуется применять хлорирование, замораживание или кристаллизацию в автоклавах. Железо является вредной примесью, сниукающей механические и литейные свойства сплава. Марганец, никель и хром в определенных количествах полезны для нейтрализации вредного действия железа и увеличения жаростойкости сплавов (см. сплавы АЛЗ и АЛЮ). Обрабатываемость резанием хорошая, свариваемость и сопротивление коррозии удовлетворительные. Микроструктура — см. вклейку лист /.  [c.141]

Данные по фазовому составу окалины (рис. 9) привели авторов к выводу, что самую высокую жаростойкость обеспечивает шпинель. Доказательством хорошего защитного действия шпинели, по их мнению, является то, что смена избыточной закиси никеля (сплав с 15 % Сг) на окисел хрома (сплавы, содержащие от 23,4 до 46,7 % Сг) практически не сказывается на жаростойкость сплавов, т.е. при наличии в окалине Ni rj04 присутствие другой окисной фазы не имеет значения. В рамках представленных данных такой вывод нельзя признать вполне убедительным, потому что относительное количество шпинели в окалине уменьшается по мере увеличения концентрации хрома в сплаве (кривая 2 на рисунке 9), тогда как показатель жаростойкости остается постоянным.  [c.35]

Общий характер влияния алюминия на жаростойкость сплавов никель-хром при 1200°С показан па рис. 35. Результаты получены путем изотермического окисления образцов в атмосфере очищенного кислорода в течение 10 ч (данные А.С. Тумарева и Л.А. Панюшина). Из рис. 35 видно, что алюминий повышает жаростой-костьо Однако судить о количествен-  [c.63]


Описаны f28l методы порошковой металлургии, применимые для проияводства жаростойких сплавов с твердеющей основой, содержащих 5—30"ij хрома, до 25°п железа и до 90% никеля и (или) до 70 о кобальта. Сплав упрочняется путем диспергирования в матрице фазы, препятствующей сдвигу (и возврату) и состоящей из карбидов, боридов, сши-щидов н нитридов титана, циркония, ниобия, тантала и ванадия. Сплав имеет высокое сопротивление ползучести в интервале 800—1050.  [c.314]

Основные жаростойкие сплавы созданы на основе железа и никеля. Химический состав высоколегированных сталей и сплавов на железной, железоннкелевой и никелевой основах, предназначенных для работы в коррозионно-активных средах и при высоких температурах, приведен в ГОСТ 5632—72. Согласно этому стандарту жаростойкие (окалиностойкие) сплавы относятся к группе II и характеризуются как стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовы средах при температуре выше 550 °С, работающие в иенагруженном или слабонагружениом состоянии. Жаропрочные стали и сплавы, отнесенные к группе III, также должны обладать достаточной жаростойкостью.  [c.408]

Никель обладает более высокой жаростойкостью в окислительных средах, чем железо, так как его единственный оксид NiO менее дефектный, чем оксид FeO. Высокая жаростойкость нихромов (сплав никеля с хромом) объясняется прежде всего образованием шпинели NiO- rjOg. Жаростойкие сплавы на никелевой основе имеют в основном структуру твердых растворов, мало упрочняются термической-обработкой и обладают невысокой прочностью и жаропрочностью, но хорошей технологичностью. Нихромы имеют высокое удельное электрическое сопротивление и поэтому используются как материал для нагревателей электропечей, а также для изготовления камер сгорания, газопроводов и деталей газотурбинных установок.  [c.414]

Жаростойкие сплавы на основе железа и никеля не претерпевают фазовых превращений, и поэтому их термическая обработка состоит в высокотемпературном нагреве для выраши-вания зерна или для снятия напряжений.  [c.414]

К конструкционным сплавам относят сплавы на медно-никелевой основе [монель, мельхиор, нейзильбер и др. (ГОСТ 492-73)]. Конструкционные сплавы (например, монель НМЖМц 28-2,5-1,5) обладают высокими механическими свойствами и коррозионной стойкостью. Термоэлектродные сплавы (хромель, копель, алюмель, манганин, константан) отличаются высокой электродвижущей силой, большим электросопротивлением при малом температурном коэффициенте электросопротивления. Жаростойкие сплавы, легированные хромом и железом, используют для изготовления электронафевательных элементов (например, сплав нихром). Сплавы с особыми свойствами магнитными - пермаллой, упругими - инвар 36Н, ковар 29НК. В данной главе рассмотрены особенности сварки только технического никеля и сплавов типа монель.  [c.462]

Изложенный механизм предполагает зависимость эффектов упрочнения и разупрочнения при ползучести металла от его сопротивления окислению. В связи с этим интересны результаты сравнительного изучения ползучести никеля и хромоникелевого сплава на воздухе и в вакууме, описанные в работе [403]. Сплав имел следующий состав 19,2% Сг 1,5% Fe 1,4% Si 0,47% Mn 0,1% Al 0,04% С остальное — никель. Он подвергался испытанию в интервале температур 593—1038° С и напряжений 10—420 Мн1м (1,05—42,2 кГ1мм ). Максимальное разрежение (при 593°С) составило 0,67 мн/м (5-10 мм рт. ст.), минимальное (при 1038°С) 13,3 мн/м (10 мм рт. ст.). Влияние среды на характеристики ползучести хромоникелевого сплава аналогично влиянию, установленному для чистого никеля. Однако из-за большей жаростойкости хромоникелевого сплава влияние температуры при прочих равных условиях оказалось для него более слабым, чем для никеля. Таким образом, полученные экспериментальные факты можно рассматривать как свидетель-  [c.439]

Благородные металлы дорого стоят и дефицитны, марганец и железо отрицательно влияют на жаропрочность и жаростойкость сплавов на основе кобальта и легирование этими элементами не применяется Поэтому основным иа элементов, стабилизирующим г ц к структуру, в сплавах кобальта является никель Содержание никеля в жаропрочных кобальтовых сплааах обычно составляет 10—30 Важное значение в этих сплавах имеет хром, который обеспечивает высокую коррозионную стойкость и положительно  [c.336]

Возможности повышения рабочих температур современных жаропрочных и жаростойких сплавов на основе титана, никеля и тугоплавких металлов за счет их твердораствор-ного упрочнения или создания гетерофазных структур практически исчерпаны. Поэтому большое внимание исследователей привлекают композиционные материалы на основе интерметаллидов, тугоплавких металлов и направленно закристаллизованных эвтектик, упрочненные дисперсными включениями, дискретными или непрерывными волокнами олее тугоплавких, прочных и жестких, чем матрица, фаз, в том числе керамических.  [c.213]

Эффективность газотурбинных двигателей (ГТД) возрастает с повышением температуры как рабочего газа, так и горячих узлов ГТД. Успехи в создании жаропрочных сплавов на основе железа, никеля, кобальта позволяют повысить рабочие температуры деталей современных ГТД до 1000...1100 °С. Дальнейшее повышение температур возможно только за счет новых конструкторских разработок систем охлаждения двигателя и использования более тугоплавких материалов. Однако тугоплавкие металлы — ниобий, молибден, вольфрам и высокопрочные сплавы на их основе имеют высокую плотность и не обладают необходимой жаростойкостью в окислительных средах, создаваемых продуктами сгорания топлива, образующими рабочий газ в ГТД. В то же время известные жаростойкие сплавы систем Ni—А1, Fe—Сг—А1 (рис. 3.10) и малолегированные хромовые сплавы недостаточно прочны при температу-  [c.214]

В целом следует отметить, что метод элех тролитического осаждения никеля -и никелевых сплавов на углеродные волокна обеспечивает формирование плотного покрытия, однородного по толщине по всему сечению жгута. Однако различные дефекты (пористость, разупрочнение й механическое разрушение волокон, формирование недостаточной прочности связи на межфазной границе и т. п.), образующиеся при получении компактного материала, не позволяют реализовать высокую исходную прочность углеродных волокон и получить материал с теоретической прочностью. Верхний предел рабочей температуры композиции никель — углеродное волокно ограничен наличием интенсивного взаимодействия в системе, приводящего к рекристаллизации и разупрочнению армирующих волокон, и низким сопротивлением материала окислению, протекающему весьма интенсивно из-за разложения молекулярного 1 ислорода на атомарный при диффузии его через никелевую матрицу. Возможно, что использование более жаростойких никелевых сплавов, специальная поверхностная обработка волокон и разработка методов формирования компактного композиционного, материала прессованием через жидкую фазу позволит преодолеть все эти трудности.  [c.400]

Высокие характеристики прочности, пластичности при комнатной и высоких температурах, хорошая коррозионная стойкость, малое давление пара и технологичность сплавов системы Си—Ni использованы при разработке припоев для пайки сталей и никелевых сплавов, применяемых, в частности, в вакуумных приборах. Температура пайки этих припоев выше, чем температура пайки меди. Снижение температуры пайки припоями на основе Си—N1, не содержаш,ими цинка, марганца и фосфора (или содержаш,ими их в количествах, не оказываюш,их заметного влияния на упругость пара), может быть достигнуто введением в них кремния и бора. Кремний, введенный в эти сплавы, заметно повышает их коррозионную стойкость, жаростойкость, а также благодаря образованию соединений с никелем — и прочность при дисперсионном твердении (табл, 39). Введение кремния способствует повышению прочности и кислотостойкости припоев в серной кислоте.  [c.131]


Эвтектика N1—Сг образуется при 49% Ni. Температура плавления эвтектики 1340--1346° С. В никеле хром растворим до 47% и повышает прочность и жаростойкость сплавов. Твердые растворы хрома в никеле—хорошие припои, но имеют относительновысокую температуру плавления. Припой Ni — (7-=-11%) Р состоит из двух фаз никеля и NijP. Его применяют в виде тонкого покрытия, наносимого на паяемые поверхности химическим способом. Припои Ni—In изготовляют и применяют в виде фольги.  [c.142]

Развитие современной техники немыслимо без использования жаропрочных и жаростойких сплавов. Основой таких сплавов чаще всего является никель. Влияние легирующих элементов, в частности железа и хрома, на коррозионное и электрохимическое поведение сплавов изучено недостаточно [1—4]. В настоящей работе изучалось анодное поведение сплавов с содержанием железа 5—30 ат. % в 1 н. Н2304 и 1 н. НСЮ4, и с содержанием хрома 1,25—31,25 ат. % в 1 н. Нг304 при 25° С. Сплавы отжигались при 1050° С с последующим охлаждением на воздухе. Сплавы № — Сг термообработке не подвергались. Состав первых определялся химическим анализом образцов, а вторых — по анализу шихты. Из исследуемого материала вырезались электроды площадью 0,5 см с токоподводом. Рабочая порерхность электрода шлифовалась наждачной бумагой с зерном до 14 мкм, а затем полировалась алмазной пастой с зерном 1 мкм. После этого электроды обезжиривались этиловым спиртом, промывались дистиллированной водой и высушивались в вакуум-эксикаторе. Нерабочая часть электрода и токоподвод покрывались перхлорвиниловым лаком. Растворы готовились из дважды перегнанных серной и хлорной кислот. Поляризационные кривые снимались на потенциостате ЦЛА. Схемы потенциостатической установки и электрохимической ячейки приведены на рис. 1 и 2.  [c.80]


Смотреть страницы где упоминается термин Никель в жаростойких сплавах : [c.27]    [c.473]    [c.234]    [c.238]    [c.235]    [c.240]    [c.414]    [c.205]    [c.654]    [c.352]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.126 ]



ПОИСК



Жаропрочные и жаростойкие сплавы никеля

Жаростойкие Сплавы на основе железа и никел

Жаростойкость

Жаростойкость сплавов

Жаростойкость. Жаростойкие сплавы

Никель

Никель жаростойкость

Никель и сплавы никеля

Сплавы никеля



© 2025 Mash-xxl.info Реклама на сайте