Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

МИКРОСКОПЫ — НАПРЯЖЕНИЯ

Рис. 1. Схема устройства туннельного микроскопа V, — напряжение обратной связи, регулирующее величину г- пунктир — траектория острия, записываемая регистрирующей системой при движении острия над линией L б — сглаженная запись ступеньки В — запись участка С с пониженной работой выхода Рис. 1. Схема устройства туннельного микроскопа V, — <a href="/info/47936">напряжение обратной</a> связи, <a href="/info/259047">регулирующее величину</a> г- пунктир — траектория острия, записываемая регистрирующей системой при движении острия над линией L б — сглаженная запись ступеньки В — запись участка С с пониженной работой выхода

В поле напряженностью 50000 В электронам сообщается скорость 124000 км/с, что соответствует длине волны, равной сотым долям ангстрема. Разрешающая способность современного электронного микроскопа порядка  [c.38]

Рис. 1.29. Электронный микроскоп Сименса, работающий при напряжении 50-100 кВ и дающий разрешение до 10 см. В соединенных друг с другом цилиндрах находятся магнитные линзы. Источник электронов расположен сверху, а увеличенное окончательное изображение объекта можно видеть на флуоресцирующем экране в нижней части прибора. Для получения фотоснимков надо помещать фотопластинки в этой плоскости. Фокусировка производится посредством из.менения силы тока в магнитных линзах. Рис. 1.29. <a href="/info/1617">Электронный микроскоп</a> Сименса, работающий при напряжении 50-100 кВ и дающий разрешение до 10 см. В соединенных друг с другом цилиндрах находятся <a href="/info/7278">магнитные линзы</a>. <a href="/info/121503">Источник электронов</a> расположен сверху, а увеличенное окончательное изображение объекта можно видеть на <a href="/info/336482">флуоресцирующем экране</a> в нижней части прибора. Для получения фотоснимков надо помещать фотопластинки в этой плоскости. Фокусировка производится посредством из.менения <a href="/info/279416">силы тока</a> в магнитных линзах.
К достоинствам подобных систем относятся повышенное по сравнению с обычными микроскопами разрешение, возможность регулирования яркости, контраста и масштаба изображения электронным способом, большой динамический диапазон (до 60 дБ и более). Для контроля материалов, прозрачных только в инфракрасном диапазоне спектра (кремний, германий, арсенид галлия), применяют лазеры, излучающие на соответствующих длинах волн, в сочетании с фотоприемниками, обладающими нужной спектральной чувствительностью. Возможно исследование объектов в поляризованных лучах, контролирование в них напряжений методом фотоупругости, а также исследование магнито- и электрооптиче-ских свойств материалов при использовании соответствующих источников электромагнитных полей.  [c.96]

Вместе с тем выполненные в последуюшем измерения высоты и шага усталостных бороздок в туннельном микроскопе показали, что соотношение между высотой и шагом (шириной) усталостной бороздки не зависит от асимметрии цикла нагружения [24]. Из этого следует, что формирование усталостных бороздок отвечает единому механизму разрушения материала в определенном диапазоне интенсивности напряженного состояния материала независимо от способа реализованного внешнего циклического воздействия. Несоответствие результатов исследований двух указанных работ [23] и [24] должно быть отнесено за счет методических особенностей приготовления шлифов для определения профиля усталостных бороздок в работе [23].  [c.295]


Геометрия трещин и их расположение зависят от распреде.ле-ния напряжений и энергии разрушения каждой фазы. Путь разрушения, наблюдаемый при обследовании поверхностей разрушения с применением оптической и электронной микроскопии, обычно определяет природу трещины и распределение напряжений перед разрушением.  [c.40]

Несмотря на то что в стеклопластиках повреждения возникают во всей напряженной области и могут легко наблюдаться при помощи микроскопа, это не было сделано вплоть до 1969 г., когда Браутман и Саху [2] провели количественные измерения повреждений в ортогонально армированных высокопрочных композитах на основе препрега с эпоксидной матрицей. Их измерения показали, что расслаивание охватывает практически все поперечные волокна уже на ранней стадии усталостного испытания. В [2] было обнаружено, что дальнейшее повреждение происходит путем медленного продвижения расслаивания по поверхности раздела слоев и последующего распространения на область между про-  [c.352]

Образование ст-фазы сопровождается сильным уменьшением объема и, следовательно, является возможным источником возникновения больших внутренних напряжений в металле. Поэтому многие исследователи считают, что образование ст-фазы может вызвать разрушение хромового покрытия при длительной эксплуатации. Под хромированным слоем виден под микроскопом обезуглероженный слой глубиной до 0,8 мм, а затем основной металл с феррито-бейнитной или феррито-перлитной структурой.  [c.244]

Неравновесные границы зерен в наноструктурных материалах вследствие наличия в их структуре внесенных дефектов с предельно высокой плотностью обладают избыточной энергией и дальнодействующими упругими напряжениями. В результате действия этих напряжений вблизи границ зерен возникают значительные искажения и дилатации кристаллической решетки, которые экспериментально обнаруживаются методами просвечивающей электронной микроскопии и рентгеноструктурного анализа. В свою очередь атомные смещения в приграничных областях изменяют динамику колебаний решетки и, как результат, приводят к изменению таких фундаментальных свойств, как упругие модули, температуры Дебая и Кюри и др.  [c.99]

В случае наноструктурных материалов исследования с помощью оптической микроскопии не позволили обнаружить локализацию деформации вплоть до очень поздних стадий циклической деформации. Более того, значение Ре остается постоянным с самого начала циклической деформации. Это означает, что обратные напряжения в этих материалах не изменяются при циклической деформации, что само по себе необычно для усталостного поведения материалов. Тем не менее, как видно из рис. 5.18а, некоторое циклическое упрочнение в наноструктурных материалах наблюдается, что свидетельствует об увеличении внутренних напряжений.  [c.215]

Просвечивающая электронная микроскопия может дать много информации о структуре покрытий и основного металла. Современные приборы позволяют получать изображения структур с увеличением до 200 000 крат и при этом проводить дифракционный анализ на выбранных участках. В просвечивающем электронном микроскопе изображение формируется фокусировкой дифрагированного потока электронов после прохождения его через образец. Используются очень тонкие объекты, причем толщина выбирается в зависимости от природы исс.ледуемого материала и используемого в микроскопе ускоряющего напряжения. В практической электронной микроскопии при нaпpянieнии 100 кВ толщина образцов обычно составляет 10 —10" мм. Разрешение (рабочее) отечественных микроско-  [c.160]

Рис. 4. Изображения поверхности кремниевого полупроводникового диода, полученные а стробоскопическом эмиссионном электроя-ном микроскопе а — напряжение на диоде отсутствует б—на диод подано запирающее напряжение 40 В, тёмная область — падение напряжения на р—п-переходе в — кратковременное (менее 40 не) прямое падение напряжения (широкая тёмная область) на базе диода при переключении его в состояние, при котором он отперт . Рис. 4. <a href="/info/690828">Изображения поверхности</a> кремниевого <a href="/info/12495">полупроводникового диода</a>, полученные а стробоскопическом эмиссионном электроя-ном микроскопе а — напряжение на диоде отсутствует б—на диод подано запирающее напряжение 40 В, тёмная область — <a href="/info/197814">падение напряжения</a> на р—п-переходе в — кратковременное (менее 40 не) прямое <a href="/info/197814">падение напряжения</a> (широкая тёмная область) на базе диода при переключении его в состояние, при котором он отперт .

Михайловский и др. [272] реализовали метод нагружения микрообразца пондеромоторными силами электрического поля с использованием ионного полевого электронного микроскопа с напряженностью поля 10 —10 В/см. Ионно-микроскопический метод исключает возможность механического повреждения микрокристалла при монтаже образца, так как образец еще до утонения крепится одним концом к массивному держателю (другой конец, к которому прикладываются пондеромоторные силы, остается свободным). Исследовали приготовленные методом утонения бездислока-ционные микрокристаллы (что контролировали с помощью электронной микроскопии) ряда металлов с ЩК- и ОЦК-решетками. Установлена масштабная инвариантность максимальной прочности кристаллов и отсутствие дисперсии.  [c.149]

Рассмотрим случай, когда функция поглощения ц(х, у) возникает из-за того, что некоторые электроны рассеиваются, не давая вклада в изображение. Часть из них теряет много энергии в процессах неупругсго рассеяния, так что их нельзя сфокусировать, должным образом в плоскости изображения. Для электронов, потерявших от 10 до20эВ своей энергии в результате плазмонных возбуждений или возбуждений отдельных атомных электронов, хроматическая аберрация объективной линзы будет дефокусировать изображение так, что для этих электронов наилучшее разрешение, достижимое в электронных микроскопах с напряжением 100 кэВ будет составлять от 10 до 20 A. Такое расфокусированное изображение будет добавляться к изображению в фокусе, которое образуется упруго рассеянными электронами. Таким образом, на получение изображения деталей образца, размер которых превышает 20 A, неупругое рассеяние не влияет. При получении изображения деталей, меньших 10 А, неупруго рассеянные электроны будут давать медленно изменяющийся ( с углом) фон, уменьшающий контраст. Это приведет к необходимости включить функцию поглощения при интерпретации изображения, возникающего благодаря упруго рассеянным электронам.  [c.294]

Микроскопическое исследование показывает, что усталостная трещина, как правило, проходит сквозь тело кристаллического зерна по границам зерен она может пройти только случайно, на некоторой части своего пути. Металлографические и рентгенографические исследования показывают, что циклические нагрузки не вызывают в металле каких-либо структурных изменений, но в отдельных кристаллических зернах наблюдается небольшая пластическая деформация, не отличающаяся принципиально от пластической деформации при статическом нагружении. Наличие пластических сдвигов в металле, подвергнутом действию переменных нагрузок, обнаруживается методами рентгенографии, а также визуально, при помощи оптического микроскопа, когда напряжение и число циклов достаточно велики, и при помощи электронного микроскопа в начальной стадии сдвиго-образования. По-видимому, незначительные пластические деформации в отдельных, наиболее неблагоприятно расположенных зернах существуют и при статических нагрузках тогда, когда напряжения значительно ниже предела текучести или предела упругости. Действительно, предел упругости всегда определяется условно (см. 60) н нахождение истинной границы, при которой появляются первые пластические деформации, практически невозможно.  [c.417]

Развитие усталостных поЬреждений схематически представлено на рис. 160. На первых стадиях нагружения возникают, сначала в отдельных кристаллических объемах, пластические сдвиги, не обнаруживаемые обычными экспериментальными методами (светлые точки). С повышением числа циклов и уровня напряжений сдвиги охватывают все большие объемы и переходят в субмикроскопические сдвиги, наблюдаемые с помощью электронных микроскопов (точки со штрихами). При определенном числе циклов и уровне напряжений (кривая 1) образуется множество трещин, видимых под оптическим микроскопом (заштрихованные точки). Начало образования металлографически обнаруживаемых трещин условно считают порогом трещинообразован и я. У низколегированных и углеродистых сталей первые трещины появляются при напряжениях, равных 0,7 —0,8 разрущающего напряжения у высоколегированных сталей и сплавов алюминия и магния микротрещины обнаруживаются уже при напряжениях, равных 0,4—0,6 разрушающего напряжения. Порог трещинообразования снижается с укрупнением зерна.  [c.278]

Вторая стадия - стадия текучести, на которой наблюдается негомогенная пластическая деформация в виде прохождения по всей рабочей длине образца фронта Людерса - Чернова. Уже на ранних стадиях пластического течения в металле могут зарождаться субмикротрещины (длиной порядка 100 нм, шириной 1-10 нм, радиус острия 0,1 нм). Этот дефект атомных масштабов, возникающий при встрече полосы скольжения с препятствием, по существу представляет собой сверхдислокацию, находящуюся в упругом равновесии с полем напряжений, создаваемых клином субмикротрещины в окружающем материале. При низкотемпературном отжиге эти субмикротрещины захлопываются. Методами малоугловой рентгеновской дифракции и электронной микроскопии обнаруживаются зародышевые субмикротрещины с размерами от тысячи ангстрем. Стадия текучести не наблюдается у металлических материалов, у которых на диаграмме статического растяжения отсутствует деформация Людерса - Чернова.  [c.16]

ИОННАЯ МИКРОСКОПИЯ. Для прямого анализа расположения атомов вокруг линии дислокации необходимо очень высокое разрешение. В настоящее время такое разрешение дает только ионный микроскоп (ионный проектор), принцип действия которого состоит в следующем. С поверхности образца, представляющего собой иглу с очень малым радиусом закругления острия (менее 10 см), находящуюся под действием поля высокого напряжения, срываются электроны. За счет эффекта поляризации на игле осаждаются молекулы нейтральнм о газа. После соприкосновения с ио-верхностью металла молекулы газа диффундируют к острию иглы. Когда такая молекула попадает в область местного усиления поля высокого напряжения, происходит ее ионизация и ион летит под действием ускоряющего высокого напряжения к флуоресцирующему экрану прибора. Этот метод, имеющий наибольшее разрешение из всех известных в настоящее время прямых методов исследования структуры материалов, позволяет различать отдельные атомы в кристаллах. Увеличение прибора определяется соотношением между радиусом кривизны острия и расстоянием от объекта до экрана и может достигать нескольких миллионов.  [c.94]


Большие возможности открываются при использовании высоко вольтных микроскопов с ускоряющим напряжением 1000 кВ, чтс позволяет просвечивать фольги толщиной в несколько микрометро (например, для алюминия 10 мкм).  [c.98]

Реакция (84) энергетически не выгодна и возможна только при концентрации напряжений на двойниковом некогерентном фронте, что и имеет место в действительности. Реакция (84) дает набор испущенных дислокаций из некогерентных границ двойника с нулевым даль-нодействующим полем напряжений. Происходит увеличение длины двойниковой прослойки за счет эмиссии дислокаций из некогерентной границы. Деформация сдвига, произведенная испущенными дислокациями, эквивалентна деформации от исходной двойниковой границы, из которой они испущены. Существование эмиссионных дислокаций для о. ц. к. и г. п. у. кристаллов подтверждено экспериментами просвечивающей электронной микроскопии, наблюдаемым пробегом субграниц впереди двойника.  [c.145]

Прерывистый характер процесса ползучести при макросдвиге дает основание предполагать, что процесс макродвижения по границам зерен осуществляется вследствие двух процессов сдвига по островкам хорошего соответствия и самодиффузии, упорядочивающей области больших нарушений. Межзеренное проскальзывание можно наблюдать по рельефу на поверхности шлифа деформированного металла. По границам зерна образуются каемки, свидетельствующие о наличии выступов и впадин. Происходящее вертикальное смещение (перемещение зерна) по отношению к поверхности шлифа позволяет с помощью интерференционного микроскопа определять величину пластической деформации, вызванной межзеренным смещением. Результаты измерений (рис. 100) дают основание считать, что доля скольжения по границам зерен мала и составляет приблизительно 10% от полной деформации (егр/е л 0,1). Эта величина зависит от угла разориентации 0, температуры, скорости деформации, приложенного напряжения, величины зерна. Например, величина смещения, а следовательно, и erp/8j увеличивается с уменьшением величины зерна и возрастанием напряжения при данной температуре (рис. 101,а). С повышением температуры отношение 8rp/ej благодаря диффузионным процессам возрастает до 0,3 (рис. 101,6). Д, Мак Лин теоретически доказал, что вклад в общую деформацию от межзеренных смещений не может быть выше 33% от общей деформации. Только в том случае, если процесс деформирования сопровождается миграцией границ, доля зернограничной  [c.173]

Измерительные преобразователи — средства измерений, которые используют для получения сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (ГОСТ 16263—70 Государственная система измерений. Метрология. Термины и определения ). Измерительные преобразователи могут изменять физическую природу входной величины (например, электромеханический, пневмоемкостный преобразователи) или оставлять ее неизменной (например, усилитель напряжения, измерительный микроскоп).  [c.104]

Для теплового контроля интегральных микросхем, транзисторов, катодных узлов выпущена серия микрорадиометров ИКР-3, ИКР-4, ИКР-5. Перемещение осуществляется с помощью двухкоординатного микрометрического столика, визуальный контроль — с помощью встроенного микроскопа. Все приборы этога типа имеют двух-аеркальный объектив, используется модуляция излучения. Объектив обеспечивает увеличение от X10 до Х40, при этом достигается линейное разрешение 60—20 мкм, температурное разрешение 0,5—3 °С. В усилительном устройстве обеспечена линейная зависимость выходного напряжения от измеряемой температуры, что позволяет измерять температуру изделий.  [c.139]

Иллюстрацией рассмотренных механизмов могут служить тонкая структура и фрактография поверхности излома композиционного материала, представленные на рис. 3. Так, электронная микроскопия приповерхностных слоев ст. Х18Н10Т с Мо-покрытием после испытаний при пониженных температурах и высоких напряжениях позволяет обнаружить в структуре основного материала вторичные фазы, образующиеся при напылении и способствующие возрастанию концентрации напряжений в локальных зонах в то же время имеются участки, свободные от дислокаций. Эта микроструктура иллюстрирует реализацию механизма  [c.106]

Рассмотрены различные варианты механизма деформации и разрушения твердых тел с плазменными покрытиями. Показано изменение воздействия покрытий и кинетики разрушения при переходе от одного диапазона температур и напряжений к другому, что подтверждается влектровной микроскопией и влектроино-франтографическим анализом. Лит. — 5 назв., ил. — 2,  [c.263]

Кривые контактной усталости при пульсирующем контакте строятся для партии одинаковых образцов, испытанных при одинаковых средних напряжениях цикла (агтах)т- За критерий разрушения при испытаниях по схеме пульсирующий контакт принимается интервал времени до образования микротрещин в зоне контакта. Но так как фиксация первой микротрещины затруднительна и при исследовательских испытаниях допустимы иные критерии разрушения, то нами рекомендуется использовать момент образования пит-тингов по контуру пятна контакта. Для более точного определения числа циклов нагружения, при котором образуются первые питтин-ги, в процессе испытания образца строится график Нц = /(Л ц)> где Нп — диаметр пятна контакта (мкм), измеряемый с помощью микроскопа, Мц — число циклов нагружения (рис. 3.16). В момент ускорения питтингообразования (начало третьей стадии развития разрушения) происходит резкое увеличение пятна контакта, что означает начало разрушения при заданном уровне напряжения цикла. Определив таким образом количество циклов нагружения, при которых происходит контактно-усталостное разрушение на различных уровнях напряжений, строится график контактной усталости в координатах а тах =  [c.47]

Установка, разработанная в Институте проблем материаловедения АН УССР [257] на базе вакуумного универсального поста, позволяет вращать объект со скоростью 15 об/с при угле падения ионного пучка 60—85°. Обе ионные пушки питаются от одного высоковольтного выпрямителя, напряжение может варьироваться от 1 до 10 кВ. Величина тока ионных пучков изменяется двумя газовыми натекателями аргона и составляет, как правило, 15—30 мкА. Регулировка установки заключается в установлении оптимального разрядного промежутка передвижением анода. Для выхода ионного пучка в катоде имеется отверстие. Разряд зажигается между торцом цилиндрического анода и плоским катодом, изготовленным из алюминия толщиной 1 мм. Исходными заготовками служили пластинки, которые утонялись на достаточно большой площади до появления нескольких отверстий с краями, прозрачными при исследовании на электронном микроскопе. Ширина участков, пропускающих электронный пучок, достигает 100 мкм [257].  [c.178]

В общем случае (В. С. Иванова и Л. А. Маслов) в изломе выделяют три основные зоны />—зона чисто усталостного разрушения, характеризующаяся наличием усталостных полос (макро- и микрополос, наблюдаемых в электронном микроскопе) U — зона перехода или зона смешанного разрушения ( ямочное как результат локальных разрушений впереди трещины, хрупкие участки и усталостные полосы) и, наконец, /г — зона долома. Длина усталостного пятна l)=ia+ld. Исчезновение зоны I, свидетельствует о том, что с увеличением напряжения происходит смена напряженного состояния, реализуемого в локальном объеме впереди трещины. Хруп- кое разрушение в условиях плоской деформации сменяется на квазивяз-кое. Для оценки микрорельефа поверхности и профиля излома в институте металлургии им. А. А. Байкова разработано оригинальное телевизионно-аналоговое устройство.  [c.45]


Попенова и Фример [34] травили металлы в газовом разряде. Они применяли для большинства высокоплавящихся металлов неон при вакууме 0,1 мм рт. ст., напряжение и сила тока составляли соответственно 5 кВ и 5 мА. Авторы показали на микрофотографиях, полученных на оптическом и электронном микроскопах, протравленные таким способом поверхности двух сталей с зернистым и пластинчатым перлитом.  [c.23]

Фазу AlgMn растворяют реактивом 50 при температуре 50° С быстрее, чем фазу А Мп, которая может приобрести темный цвет только после продолжительного травления. Для выявления микроликвации служат растворы 20 и 50. Реактив 34 применяют для травления границ зерен. Тури и Ландерл [24] упоминают, что гомогенизированные и неполностью отожженные сплавы алюминия с марганцем нельзя травить каким-либо известным реактивом для выявления границ зерен. Они рекомендуют следующие методы по данным Жаке [27], при анодной обработке (напряжение 3 В, плотность тока 0,5 А/см ) в 100—300 г хромовой кислоты на литр 85%-ной фосфорной кислоты в течение 40 мин при 20° С на материале, подвергнутом неполному отжигу, слабо выявляются границы зерен. Их можно рассмотреть в микроскоп, но не удается сфотографировать. Травление этих сплавов не всегда получается качественным.  [c.271]

Патрик и др. [54] изучали поверхности разрушения с помощью сканирующего электронного микроскопа с разрешением 200 А и установили, что разрушение под влиянием влаги происходит по поверхности раздела смолы и склеиваемого материала. Обнаружено также, что на поверхности алюминия образуется р-шдро-окись алюминия (байерит), разрушающаяся в процессе коррозии под напряжением. По-видимому, уже на первой или на второй стадии воздействия воды происходит поверхностный гидролиз окиси алюминия с образованием байерита.  [c.109]

В работе [10] изучено развитие поврежденности при статическом растяжении и циклическом нагружении композитов с матами из рубленой пряжи и полиэфирной матрицей. Циклическое нагружение проводилось при пульсируюш,ем растяжении и при симметричной форме цикла напряжений (растяжение — сжатие), чтобы получить большую и малую долговечности. Поверхности образцов были отполированы до испытаний, и некоторые выбранные участки были сфотографированы с применением микроскопа. В процессе испытаний те же части вновь фотографировались при том же увеличении. Для оценки расслаивания на каждой микрофотографии подсчитывалось число отслоенных волокон и измерялась общая длина трещин в смоле. Было обнаружено, что число отслоений и длины трещин в смоле значительно менялись в зависимости от расположения исследуемых участков. Однако в общем виде результаты, а именно число отслоений или длины трещин,  [c.353]

Измерения плотностей дислокаций в металлической матрице методами трансмиссионной электронной микроскопии [24] и изучения ямок травления [12], а также измерения in situ напряжений рентгеновскими методами [13, 14] показывают, что матрица композита в состоянии поставки является деформационно упрочненной (как механически, так и термически) и что дополнительное деформирование вызывает незначительное или не вызывает никакого дополнительного деформационного упрочнения матрицы [7, 24, 36, 56, 21, 22]. Стабильные петли гистерезиса на диаграмме напряжение — деформация в композитах алюминий — кварц [7], алюминий — бериллий [21] и алюминий — бор [22, 55], как правило, наблюдались после 3—20 циклов.  [c.404]

Микроморфология разрущения в зоне магистральной трещины носит двойственный характер. В основном разрущение идет по границам зерен за счет образования клиновидных трещин. С другой стороны, в зоне клиновидных трещин впереди фронта магистральной трещины и рядом с ней имеется значительное количество пор ползучести. В металле диска далее по периметру вне зоны видимой трещины и микротрещин имеются зародыщи пор, выявляемые методами оптической и электронной микроскопии. Следовательно, в зоне концентрации напряжений идет процесс порообразования. При периодических перегрузках, которые могут иметь место в пусковой период работы ротора, в металле, пораженном порами, происходит образование клиновидных межзеренных трещин в пределах зерна. В устье трещины за счет ускорения процессов диффузий в поле повышенных напряжений и межзеренного проскальзывания происходит образование крупных карбидов и снижается трещиностойкость стали. В дальнейшем процесс разрушения идет с ускорением и завершается смешанным разрушением.  [c.47]

Прямые наблюдения границ зерен, выполненные методом высокоразрешающей просвечивающей электронной микроскопии, дают доказательства их специфической дефектной структуры в наноструктурных материалах вследствие присутствия атомных ступенек и фасеток, а также зернограничных дислокаций. В свою очередь, высокие напряжения и искажения кристаллической решетки ведут к дилатациям решетки, проявляющимся в изменении межатомных расстояний, появлении значительных статических и динамических атомных смещений, которые экспериментально наблюдались в рентгеновских и мессбауэрографических исследованиях.  [c.86]

Для вязкого излома характерным является ямочное микростроение. При рассмотрении поверхности пластичного излома в электронный микроскоп видно ямочное, а в оптический — грубоямочное строение (см. рис. 5). Такое строение объясняется тем, что при достижении предельных состояний в локальных объемах на участках, представляющих собой препятствия для непрерывности деформации, зарождаются микропустоты. Часто это границы зерен, субграницы, частицы избыточной и упрочняющей фаз, границы фаза—матрица, участки скопления дислокаций, в гомогенных материалах — место пересечения плоскостей скольжения и т. п. По мере увеличения напряжений микропустоты растут, сливаются, что приводит к полному разрушению с образованием на изломе углублений в виде ямок, соединенных между собой перемычками. Если бы дефектов, вернее, неоднородностей в материале не существовало, то разрушение должно было бы наступить после того, как сечение образца приобретет вид точки. Надрыв у внутреннего дефекта облегчается образованием объемного (в неблагоприятных случаях — гидростатического) напряженного состояния. Подобные условия существуют вблизи надрезов или в области шейки растягиваемого образца. При высоком значении относительного сужения г изломы имеют, как правило, мелкоямочное строение, при малом значении ф и косом изломе — крупноямочное. При разрушении от чистого среза также может быть отрыв при наличии большого количества включений, расположенных вдоль плоскостей скольжения.  [c.24]

В емкости из "титанового сплава BTI4 обнаружено множественное разрушение (рис. 41) после ее транспортировки в контейнере и выдержки в течение длительного времени. Разрушение начиналось от сварных точек (рис. 41,а и б), имело хрупкий характер, на поверхности излома наблюдались следы постепенного развития трещины в виде шевронов. Разрушение могло быть усталостным под действием вибрационных нагрузок при транспортировке в контейнере. Микрофрактографический анализ с помощью оптического микроскопа показал сглаженный рельеф в виде плато вытянутой формы, похожий на усталостный. На электронных фрактограммах усталостных признаков обнаружено не было. На поверхности излома наблюдались хрупкие фасетки, присущие замедленному разрушению (рис. 41, в). На основании исследования сделан вывод о том, что замедленное разрушение произошло при вылел<ивании изделия. Замедленному разрушению способствовала система установки емкости в контейнере, при которой она касалась ложемента не по всей плоскости, а в нескольких участках, что вызвало действие изгибающих напряжений.  [c.66]


Смотреть страницы где упоминается термин МИКРОСКОПЫ — НАПРЯЖЕНИЯ : [c.77]    [c.415]    [c.16]    [c.50]    [c.151]    [c.169]    [c.37]    [c.459]    [c.135]    [c.299]    [c.266]    [c.114]    [c.19]   
Справочник машиностроителя Том 3 (1951) -- [ c.0 ]



ПОИСК



Микроскоп

Микроскопия

Микроскопия микроскопы



© 2025 Mash-xxl.info Реклама на сайте