Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность раздела смолы

В связи с образованием неоднородного слоя аппрета на поверхности стекла возникает вопрос о том, какие из составляющих этого слоя определяют эффективность аппретирующей пленки при защите поверхности раздела смола—стекло от деструкции при воздействии воды. Далее необходимо знать, какой минимум химических связей и какое количество составляющих аппретирующего слоя необходимы для обеспечения такой защиты и при каких условиях достигается наилучшая защита.  [c.130]


Изучение природы поверхности раздела стекло — смола с целью улучшения физических, механических и электрических свойств стекловолокнистых полимерных композитов ведется с 1942 г. Для объяснения полученных результатов были предложены различные теории, которые в какой-то мере определили направление дальнейших работ по улучшению поверхности раздела. Несмотря на систематические научные исследования, начало которых относится к 1963 г., до сих пор нет полного понимания природы поверхности раздела. Практически единственной широко распространенной теорией все еще остается теория химической связи.  [c.11]

С помощью оптического микроскопа изучался характер изломов на единичных волокнах, заключенных в прозрачные отливки из эпоксидных смол [31]. Наиболее распространенной формой излома оказались двухконусные трещины или отдельные нормальные плоскости излома в смоле, исходящие из точки повреждения волокна. Было показано, что если матрица достаточно пластична и способна на начальной стадии сопротивляться растрескиванию, то разрыв адгезионной связи происходит по поверхности раздела. Зная предел прочности матрицы при растяжении, можно сравнить его с адгезионной прочностью, и, таким образом, установить, какой механизм преобладает в нагруженном образце.  [c.22]

Для того чтобы адгезия на поверхности раздела в композитах была достаточно прочной, адгезив должен смачивать субстрат. Теоретически возможно, что при полном смачивании упрочнителя смолой адгезионная прочность, обусловленная физической адсорбцией, будет превосходить когезионную прочность смолы (см. разд. II,А). Но так как в реальных системах возможно наличие воды и других потенциально непрочных граничных слоев, то физическая адсорбция не обеспечивает необходимой адгезионной прочности.  [c.34]

На рис. 3 также показан механизм возникновения трещины, или разрушение адгезионного соединения на поверхности раздела. Образец представляет собой залитое в смолу единичное волокно (рис. 3,а). При растяжении такого образца в направлении, перпендикулярном оси волокна, вследствие эффекта Пуассона воз-  [c.44]

II. Аппрет на поверхности раздела стекло—смола..................  [c.119]

II. Аппрет на поверхности раздела стекло — смола  [c.130]

Во-первых, поверхность раздела по составу более сложная и содержит компоненты, которые могут ослабить связь аппрета со смолой. Во-вторых, природа аппрета может меняться в результате  [c.132]


Несмотря на то что аппрет может быть за несколько часов удален с поверхности стекла горячей водой, при нанесении на обработанное стекло смолы для образования соответствующего адгезионного соединения стекло — аппрет — смола поверхность раздела может сохранять устойчивость к кипячению в воде в течение многих недель даже под нагрузкой.  [c.138]

На поверхности раздела смола— минеральный наполнитель аппретирующие добавки могут выполнять различные функции служить смазкой, предохраняющей минерал от абразх вного истирания смолой [32], препятствовать коррозии поверхности раздела под напряжением в воде [33]. Трудно сказать, являются ли ханические повреждения поверхности раздела следствием коррозии под напряжением в воде или они сами способствуют доступу воды, которая вызывает коррозию .  [c.39]

Патрик и др. [54] изучали поверхности разрушения с помощью сканирующего электронного микроскопа с разрешением 200 А и установили, что разрушение под влиянием влаги происходит по поверхности раздела смолы и склеиваемого материала. Обнаружено также, что на поверхности алюминия образуется р-шдро-окись алюминия (байерит), разрушающаяся в процессе коррозии под напряжением. По-видимому, уже на первой или на второй стадии воздействия воды происходит поверхностный гидролиз окиси алюминия с образованием байерита.  [c.109]

Механизм ионного обмена. Некоторая информация о механизме ионообменных процессов может быть получена на основании представлений Доннана , относящихся к распределению электролитов по обе стороны мембраны, непроницаемой для одного из ионов. В случае ионообменной смолы поверхность раздела смола —вода можно рассматривать как мембрану, а функциональные группы как неподвижные ионы. Для катионообменной смолы в натриевой форме, помещенной в раствор поваренной соли, имеем следующие соотношения  [c.204]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]

Рассмотрим сначала случай твердой хрупкой частицы в относительно вязкой матрице. На поведение композита непосредственно влияют размер частиц, их объемная доля и прочность поверхности раздела. Частица действует как концентратор напряжений. Ее размер и расстояние до соседней частицы определяют взаимодействие между полями напряжений частиц. При разрушении такого композита трещина в непрерывной фазе (матрице) будет многократно наталкиваться на частицы. Если прочность поверхности раздела между частицей и матрицей мала, то трещина будет вести себя, как при взаимодействии с порой, поскольку такая частица не способна передавать растягивающие напряжения, а радиус кривизны у нее меньше, чем у фронта трещины. В результате возможен рост вязкости разрушения. Это подтверждается данными для армированных пластиков, у которых прочность связи по поверхности раздела можно в известной степени регулировать с помощью специальной обработки поверхности упрочнителя. В работах Браутмана и Саху [4], а также Уамбаха и др. [49] было установлено, что вязкость разрушения композитов с матрицей из эпоксидной смолы, полиэфира или полифениленоксида, армированных стеклянными сферами, растет по мере снижения прочности связи по поверхности раздела. Помимо затупления вершины трещины предложены и другие механизмы, объясняющие повышение вязкости разрушения. Браутман и Саху, например, связывают его с увеличением трещинообразования и деформации в подповерхностных слоях. Для исследованных композитов изменение объемной доли стеклянных шариков по-разному влияет на вязкость разру-  [c.302]


Механические характеристики полимерных ком1Позитов, арми рованных волокнами, зависят главным образом от трех факторов прочности и упругости волокна прочности и химической стабильности смолы прочности связи между смолой и волокном, от которой зависит эффективность передачи напряжения через поверхность раздела. Каждый из перечисленных факторов может влиять на механические свойства композитов.  [c.12]

Сведения о природе поверхности раздела, которыми мы располагаем в настоящее время, недостаточны для разработки новых аппретов, пред назначе1нных для современных стеклопластов, особенно 1в случае упрочненных термопластиков. По сравнению с 1942 г. в решении этой проблемы достигнут значительный прогресс, однако до сих пор остается необъясненной очень высокая в отдельных случаях прочность слоистых пластиков. Как правило, это связывается с оптимальными условиями, когда аппрет, стекловолокно, смола и способ изготовления — все было самым лучшим (best evers). В табл. 1 приводятся прочностные характеристики некоторых композитов, полученных в таких оптимальных условиях в Военно-морской артиллерийской лаборатории США (NOH).  [c.14]

В 1962—il963 гг. специальное проектное бюро фирмы О. А. Smith (POLARIS) проводило изучение влияния химии поверхности стекла на смачивание, прочность и временную устойчивость связи с эпоксидной смолой. Исследовалось влияние этих факторов на прочность слоистого пластика. Полученные результаты расширили представления о химии поверхности раздела в композитах.  [c.34]

Обработка стекловолокна силаном ухудшает, а не активирует смачивание его смолой. Лэд и Нельсон [26] показали, что стекло, обработанное аминопропилсиланом, плохо смачивается эпоксидной смолой, однако временнйя устойчивость адгезионной связи на поверхности раздела в присутствии воды в 200 раз выше, чем для необработанного волокна. Изучая многочисленные органосодержащие силаны как потенциальные аппретирующие добавки для полиэфирных смол, Плюдеман [37] не обнаружил никакой связи между полярностью силана или смачиваемостью стекла, обработанного силаном, и их поведением в полиэфирном слоистом пластике. Тем не менее Лотц и др [29], сравнивая аппреты для эпоксидных смол, обнаружили, что при иопользовании силанов, обладающих максимальным критическим поверхностным натяжением Ус, получаются наилучшие слоистые пластики. Очевидно, вначале механизм образования адгезионного соединения с помощью аппретирующих добавок не связан со смачиваемостью поверхности. Только после соблюдения основных требований получения надежной адгезии дальнейшее увеличение ее прочности может быть достигнуто в результате улучшения смачиваемости стекловолокна, обработанного смолой.  [c.35]

Не существует единого мнения относительно того, зависит или не зависит прозрачность (непрозрачность) слоистого пластика из аппретированных волокон от способности их поверхности смачиваться смолой. Визуальные наблюдения показали, что очищенные стекловолокна полностью смачиваются жидкой смолой и полиэфирный композит на их основе очень прозрачен в процессе изготовления и отверждения, но становит1ся мутно-белым после охлаждения. Непрозрачность слоистого пластика обусловлена возникновением мелких трещин в смоле или разрушением адгезионного соединения на поверхности раздела из-за усадочных напряжений и не связана со смачиванием стекла смолой. Хорошая аппретирующая добавка до известной степени предотвращает образование трещин и разрыв адгезионной связи и позволяет получать прозрачный СЛОИСТЫЙ материал. Вообще имеется коррел-я-ция между механическими характеристиками слоистого пластика и прозрачностью композита из аппретированного стекловолокна и смолы.  [c.35]

Контроль за разрушением адгезионного соединения на поверхности раздела в композитах может быть необходим для изделий специального назначения, которые должны обладать высокой вязкостью разрушения или для которых напряжения в волокнах являются в основном растягивающими. Ткань из Е-стекла, обработанная шлихтующим составом, использовалась для изготовления брони с высокой ударной прочностью [2]. При изготовлении сферических баллонов высокого давления для сжатого воздуха, устанавливаемых на самолетах, применялась в основном стеклянная ровница, обработанная замасливателем, который ухудшал прочность связи стекловолокна со смолой [17]. Для большинства применяемых композитов требуется сочетание хорошей адгезионной прочности и ударной вязкости. Силановые аппреты в значительной степени способствуют такому сочетанию свойств.  [c.36]

Теория деформируемого (аппретирующего) слоя была предложена Хупером [20], который обнаружил, что усталостные свойства слоистых пластиков значительно улучшаются при нанесении аппретов на стеклянные наполнители. Он предположил, что аппрет на поверхности раздела в композите пластичен. Если учесть усадку смолы при отверждении и относительно большую разницу коэффициентов теплового расширения стеклянных волокон и смолы в слоистом пластике, то во многих случаях можно ожидать высокого значения напряжения сдвига на поверхности раздела в отвержденном (ненагруженном) образце. В этом случае роль аппрета состоит в локальном снятии таких напряжений. Следовательно, аппрет должен обладать достаточной рела1исацией, чтобы напряжение между смолой и стекловолокном снижалось без разрушения адгезионной связи. Если все же адгезионное соединение нарушается, то это свидетельствует об отсутствии предполагаемого механизма самозалечивания повреждения. Можно ожидать, что уменьшение внутренних напряжений способствует повышению прочности слоистого пластика, особенно при неблагоприятных условиях окружающей среды (влажная атмосфера).  [c.36]


Это приводит к локальному нарушению оптимального соотношения компонентов в результате предпочтительной адсорбции . Считалось, что указанный эффект играет важную роль лишь вблизи поверхности раздела, так как процесс разделения зависит от скоростей диффузии, которые довольно низкие в вязких смолах. Отсюда следует, что аппретирование приводит к образованию на поверхности раздела слоя смолы разной толщины и гибкости. Толщина этого слоя, может быть гораздо больше 100 А. Кроме того, такой слой должен быть пластичным и прочным, чтобы обеопечить релаксацию и эффективную передачу напряжений между волокнами в нагруженном состоянии. Было показано, что как обработанная, так и необработанная поверхность стекла проявляет хроматографические свойства. Сравнивая ИК- опектры (рис. 5 и 6), можно видеть, что использование стекловолокна, об-  [c.37]

На рис. 16 показаны образцы, которые используются для непосредственного определения прочности сцепления волокна и смолы при сдвиге и при отрыве по поверхности раздела. Образец для определения прочности сцепления имеет постоянное поперечное сечение, а образец для определения прочности сцепления при отрыве — уменьшенное поперечное сечение. Браутман [ill] использовал эти модели для измерения прочности сцепления в эпоксидных боропластиках. Он обнаружил, что прочность сцепления при отрыве саста1вляет примерно 0,56 кгс/мад , а сдвиговая прочность — около 5,6 игс/мм , т. е. в 10 раз больше.  [c.56]

Рис. 26. Распределение остаточных усадочных напряжений на поверхности раздела в композите при различном соотношении модулей упругости волокна и смолы и объемной доле волокна 0,64 и атАТ=0,01 [31]. Рис. 26. Распределение <a href="/info/301898">остаточных усадочных напряжений</a> на <a href="/info/26134">поверхности раздела</a> в композите при <a href="/info/515135">различном соотношении</a> <a href="/info/487">модулей упругости</a> волокна и смолы и <a href="/info/267970">объемной доле волокна</a> 0,64 и атАТ=0,01 [31].
Рис. 28. Распределение напряжений, возникающих на поверхности раздела в композите с объемной долей волокна 0,64 иод действием внешней напрузки при различных значениях модулей упругости волокна и смолы [31]. Рис. 28. <a href="/info/166564">Распределение напряжений</a>, возникающих на <a href="/info/26134">поверхности раздела</a> в композите с <a href="/info/267970">объемной долей волокна</a> 0,64 иод действием внешней напрузки при <a href="/info/673251">различных значениях</a> <a href="/info/487">модулей упругости</a> волокна и смолы [31].
Рис. 11. Зависимость скорости роста трещины от растягивающего усилия на поверхности раздела алюминий—эпоксидная смола на основе бисфенола-А, отвержденная амином [63]. Рис. 11. Зависимость <a href="/info/34435">скорости роста трещины</a> от растягивающего усилия на <a href="/info/26134">поверхности раздела</a> алюминий—<a href="/info/33628">эпоксидная смола</a> на основе бисфенола-А, отвержденная амином [63].
Воздействие влаги на поверхность раздела между матрицей и упрочнителем может приводить к накоплению воды на гидрофильных центрах и возникновению осмотического давления, достаточного для расслоения композита. Эшби и Вайетт [2] исследовали поверхность раздела стекло — смола в стеклопластиках и показали, что вода диффундирует к гидрофильным включениям на поверхности стекла и осмотическое давление, создающееся в таких водных ячейках, приводит к быстрому расслоению материала, а  [c.110]

Наряду со стекловолокном основными упрочнителями композитов являются углеродные (графитовые) волокна, нитевидные кристаллы и волокна нз высокопрочных металлов, таких, как бор. Эти волокна менее чувствительны к воде, чем стеклянные, уже потому, что они не так гидрофильны. Вайетт и Эшби [78] сравнивали действие воды на полиэфирные композиты, армированные волокнами углерода и Е-стекла. В обоих случаях наблюдалось набухание смолы, однако интенсивно ра сслаивался только стеклопластик. Предполагалось, что волокна из металлов или из окислов металлов не более гидрофильны, чем кварц, а, как уже отмечалось [2], кварцевые волокна не расслаиваются при выдержке композита в воде. Тем не менее металлы и окислы металлов (в отличие от углерода) подвержены коррозии под напряжением [76]. Очевидно, накопление воды на поверхности раздела между окислом металла и полимером, которое является следствием гидрофильного загрязнения, приводит к образованию дефектов и разрыву волокна.  [c.115]

Даже есди материал не нагружен, вода может достигать поверхности раздела и ухудшать адгезионное соединение. По-видимому, такая миграция воды зависит от структуры смолы, а эта структура является сложной, особенно вблизи поверхности раздела. Согласно существующим данным, поверхность раздела может оказывать влияние на процесс полимеризации и старение полимера.  [c.116]

Почти при всех испытаниях на долговечность, проведенных Шрейд10ром и Блоком [10], разрушение адгезионного соединения наблюдалось только по (поверхности раздела, что позволяет исследовать радиоактивность остальной поверхности стекла, а часто и расслоившейся смолы. После разрушения адгезионного соединения стекло — аппрет — эпоксидная смола о степени радиоактивности поверхности стекла можно судить, сравнивая количество АПС, оставшегося на поверхности стеклянного блока, с количеством АПС на той же поверхности стекла до склеивания. Как видно из рис. 10, после разрушения адгезионного соединения половина пленки, адсорбированной на поверхности стекла (примерно два монослоя из расчета одна молекула на поверхности площадью 33 А ), остается на ней, а половина (пленки удаляется.  [c.133]

Указанные факторы явились предметом многочисленных исследований, в результате которых были созданы упрочненные и наполненные системы с улучщенными механическими и диэлектрическими свойствами. Было установлено, что от поверхности раздела между смолой и наполнителем или упрочнителем сильно зависит степень реализации потенциально достижимой прочности системы и последующее сохранение прочности в жестких условиях эксплуатации композита. В настоящей главе рассматривается поверхность раздела и влияние на нее органофункциональных силанов.  [c.143]

Изучение смачивания обработанного силаном стеклянного волокна существенно для понимания механизм первичного адгезионного взаимодействия силановых аппретов, так как поверхность раздела между аппретом и смолой исчезает в процессе изготовления композита. В идеальном случае остается только одна граница раздела между полимером, который модифицирован силанолом, и поверхностью минерального наполнителя.  [c.195]


Смотреть страницы где упоминается термин Поверхность раздела смолы : [c.26]    [c.133]    [c.133]    [c.16]    [c.20]    [c.21]    [c.22]    [c.29]    [c.29]    [c.106]    [c.106]    [c.107]    [c.110]    [c.111]    [c.111]    [c.114]    [c.120]    [c.133]    [c.138]   
Разрушение и усталость Том 5 (1978) -- [ c.379 ]



ПОИСК



Поверхность раздела

Смола



© 2025 Mash-xxl.info Реклама на сайте