Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавов растворение

По технологии изготовления изделий магниевые сплавы разделяют на литейные (маркировка МЛ ) и деформируемые ( МА ). Магниевые сплавы подвергаются различным видам термической обработки. Так, для устранения ликвации в литых сплавах (растворения выделившихся при литье избыточных фаз и выравнивания химического состава по объему зерен) проводят диффузионный отжиг (гомогенизацию) фасонных отливок и слитков (400—490 °С, 10—24 ч). Наклеп снимают рекристаллиза-ционным отжигом при 250—350 °С, в процессе которого уменьшается также анизотропия механических свойств, возникшая при пластической деформации. Магниевые сплавы, в зависимости от состава, могут упрочняться закалкой (часто с охлаждением на воздухе) и последующим старением при 150—200 °С (режим Тб). Ряд сплавов закаливается уже в процессе охлаждения отливок или поковок и может сразу упрочняться искусственным старением (минуя закалку). Однако часто ограничиваются только гомогенизацией (закалкой) при 380—540 °С (режим Т4), ибо последующее старение, повышая на 20—35% прочность, приводит к снижению пластичности сплавов.  [c.178]


У технически чистого алюминия при 200 и 250 С при уменьшении периода от 1 ч до 1 мин происходит компенсация скоростей ползучести вследствие возврата деформации, поэтому величина ij) приближается к нулю. В отличие от этого у высокочистого алюминия не обнаружили заметного уменьшения г . Учитывая подобные результаты, полученные и для других материалов, определили [74] соотношение между величиной ij) и приращением деформации ползучести на один цикл при нагружении (рис. 4.45). На рис. 4.45, а показано, что независимо от типа материала и температуры величина ij) уменьшается от 1 до О за период, когда деформация ползучести, возникающая за один период нагружения, составляет — 1 %. На рис. 4.45, б такого явления, т. е. уменьшения гр до нуля, не обнаруживается. Такое различие зависимостей связано с наличием или отсутствием в сплавах растворенных атомов.  [c.128]

ТРАВЛЕНИЕ МАГНИЕВЫХ СПЛАВОВ — растворение металла с целью удаления загрязнений или доведения заготовок до требуемых размеров и формы (размерное травление). Травление осуществляется химич. или электрохимич, методами наиболее распространен первый метод. Магний и его сплавы растворяются в подавляющем большинстве кислот и практически не растворимы в щелочах,  [c.353]

Роль этих легирующих добавок многообразна. Одни из них заполняют пустоты между атомами основного металла (или основных металлов), тем самым цементируют их другие способствуют удалению из сплавов растворенных в них и придающих им хрупкость газов (О2, Н2, N2) или переводу последних в твердые вещества (оксиды, гидриды, нитриды) третьи улучшают микроструктуру сплава четвертые образуют химические соединения с одним из компонентов сплава, обладающие теми или иными ценными свойствами (например, твердостью), и т. д. Во всех случаях влияние легирующих добавок на свойства металла или сплава благо-  [c.93]

При нагреве сплавов вначале по линии солидуса расплавляется эвтектика, в которой при дальнейшем нагреве постепенно растворяются кристаллы свинца (у доэвтектических сплавов) или сурьмы (у заэвтектических сплавов) растворение заканчивается по линии ликвидуса, выше которой находятся жидкие растворы системы сплавов.  [c.43]

Масла удаляют из стружек медных сплавов растворением в бензине, пробу сушат. Разность весов пробы до обработки и после показывает содержание влаги и масел. Содержание механической примеси железа определяют отбором железа магнитом. После отбора прочего засора в пробе взвешиванием определяют содержание металла.  [c.272]


Строение твердых растворов на основе одного из компонен-тоз сплава таково, что в решетку основного металла-растворителя входят атомы растворенного вещества. Здесь возможны два принципиально различных случая,  [c.100]

Вторая группа. Если в сплавах при нагреве происходит фазовое превращение (аллотропическое превращение, растворение второй фазы и т. д.), то нагрев выше некоторой критической температуры вызывает изменение в строении сплава. При последующем охлаждении произойдет обратное превращение, Если охлаждение достаточно медленное, то превращение будет полное и фазовый состав будет соответствовать равновесному состоянию.  [c.225]

Для газовой сварки сталей присадочную проволоку выбирают в зависимости от состава сплава свариваемого металла. Для сварки чугуна применяют специальные литые чугунные стержни для наплавки износостойких покрытий — литые стержни из твердых сплавов. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы, которые могут быть в виде порошков н паст для сварки меди и ее сплавов — кислые флюсы (буру, буру с борной кислотой) для сварки алюминиевых сплавов — бескислородные флюсы на основе фтористых, хлористых солей лития, калия, натрия и кальция. Роль флюса состоит в растворении оксидов и образования шлаков, легко всплывающих на поверхность сварочной ванны. Во флюсы можно вводить элементы, раскисляющие и легирующие наплавленный металл.  [c.207]

Компоненты сплава Me и Mt переходят из сплава в окисел, растворяясь в нем в количествах, избыточных по отношению к стехиометрическому составу. Энергии, требуемые для перевода атомов Me Vi Mt из сплава в растворенное состояние (энергии растворения W), изменяются линейно с концентрацией Me в слое сплава под окислом и в решетке слоя окисла у металла.  [c.89]

Растворение твердого металла в жидком состоит из двух последовательных стадий гетерогенной и гомогенной диффузии. Скорость процесса растворения определяется или одной, более заторможенной из этих стадий (первой—при растворении Рев Na, РЬ в сплавах РЬ—Sn, рис. 103, а) второй — при растворении Си в РЬ и Bi, Ni и РЬ, Fe в Hg рис. 103, б) или обеими (при растворении Ni и Си в РЬ, РЬ в Sn) и в изотермических условиях плавно изменяется от начального максимального значения до нуля при достаточно большой длительности растворения. Повышение температуры и движение жидкого металла увеличивают скорость растворения. Растворение сплавов может быть селективным (избирательным).  [c.143]

Таким образом, эта теория рассматривает железо как сплав активного (Fe " ) и пассивного (Fe ) железа. Растворение железа в пассивном состоянии в виде ионов Fe рассматривается как подтверждение правильности этой теории.  [c.309]

При действии реагента на сплав разрушается несколько атомных слоев сплава до тех пор, пока не будут достигнуты эти защитные плоскости и скорость растворения сплава резко снизится.  [c.329]

Значительная доля растворения ряда металлов и сплавов в кислотах по химическому механизму ограничивает эффект катодной электрохимической защиты этих металлов. Как показали  [c.366]

Твердые растворы вычитания. Эти сплавы, известные также под названием растворов с дефектной решеткой, образуются при растворении в химическом соединении двух компонентов избытка одного из компонентов, причем часть узлов решетки освобождается от атомов растворителя и не заполняется атомами другого компонента. Например, алюминий и кобальт дают химическое соединение, причем это соединение может растворять избыток и алюминия, и кобальта. Когда в  [c.123]

Для обработки заготовок из высокопрочных и коррозионно-стойких сталей, жаропрочных, магнитных и твердых сплавов, полупроводниковых и других материалов, а также заготовок сложной конфигурации из легированных сталей эффективно применять электрохимические методы размерной обработки, основанные на принципе анодного растворения  [c.305]

Для умягчающей термообработки (промежуточной) после наклепа сплавы следует нагревать до 750—850° С. Для получения сплава высокой пластичности после прогрева достаточны короткие выдержки (2—10 мин). Практически при термической обработке этих сплавов, проводимой в вакууме или в водороде, с целью удаления из сплавов растворенных и абсорбированных газов применяют более длительные выдержки, а перед пайкой со стеклом подвергают отжигу при 1050—1100° С длительностью 10—30 мин. Это необходимо для того, чтобы в стекле в местах спаев не образовывались газовые пузыри. Перед отжигом детали должны быть полностью обезм< н-рены. Отжиг можно проводить в обычных электрических и газовых печах и в среде прокаленного асбеста. Недопустим отжиг в науглероживающей атмосфере. После отжига в открытых печах на металле образуется тонкий слой окалины, который может быть удален травлением в смеси кислот, нагретой до 50—60° С соляной ки-  [c.300]


Для сплава Си—Si с содержанием 0,1% Si рост толщины этой подокалины при 1000° С приближенно подчиняется параболиче-скбму закону [31]. При более низких температурах кислород преимущественно диффундирует по границам зерен, которые о гаща-ются кремнеземом. Для сплава Си—А1 с содержанием 0,1 % А1 также характерен этот тип разъедания. Более богатые бинарные сплавы этой системы образуют слои с высокими защитными свойствами вследствие диффузии достаточных количеств алюминия к поверхности раздела металл — окисел. В сплавах Си—Be наблюдается такой же переход от образования защитного слоя к внутреннему окислению, но это изменение происходит при более низких содержаниях бериллия, чем соответствующей добавки в сплавах Си — А1, роскольку скорость диффузии бериллия в меди больше, чем алю- шия в меди. В обеих системах сплавов растворенные атомы должны диффундировать к поверхности раздела и образовывать защитный слой преяеде чем в сплав проникнет кислород. В большинстве случаев внутреннее окисление является помехой. Оно изменяет механические свойства поверхности и может оказать неблагоприятное влияние при операциях деформации. Последние достижения технологии, однако, показывают, что этот эффект можно использовать для упрочнения металлической решетки.  [c.42]

Смешанйое параболическое уравне ние 23 Сплавов растворение 98 Стандартные электродные потенциа-  [c.221]

Теоретические соображения. Интересно обсудить возможный механизм частичной сверхпроводимости проволоки из фосфористой бронзы. Кеезом [25] и Бэббит и Мендельсон [45] предположили, что явление частичной сверхпроводимости обусловливается наличием большого количества сверхпроводящих включений в виде чистого металла или сверхпроводящего сплава, растворенного в фосфористой бронзе. Кроме того, они предположили, что эти включения имеют форму тонких игл, образовавшихся при протяжке и расположенных параллельно оси проволоки. Однако эти авторы дают различную интерпретацию линейной зависимости удельного сопротивления от температуры. Кеезом полагал, что благодаря очень малым и случайно распределенным размерам игл сверхпроводящие переходы в них беспорядочно распределены по всему температурному интервалу. По мере понижения температуры все большее и большее число игл становится сверхпроводящим и, таким образом, уменьшается сопротивление проволоки. Бэббит и Мендельсон, напротив, предположили, что иглы образуют цепи, и так как один и тот же ток проходит через все иглы, составляющие одну цепь, то более тонкие иглы становятся сверхпроводниками при более низких температурах, чем более толстые. Этим можно объяснить незначительный наклон кривой зависимости удельного электросопротивления от температуры.  [c.205]

Следует отметить, что во всех сплавах, лежащих между точками F и D, нагрев мол<ет вызвать полное растворение избыточной В-фазы И получение шрп высоких температурах однород-Fioro а-раствора. В термической обработке у такого сплава будет участвовать вся структура. Для сплавов, лежащих правее точки D, часть Б-фазы остается нерастворенной и эта часть структуры не участвует в процессах термической обработки. Наиболее эффективно термическая обработка повлияет на сплав, соответствующий по концентрации точке D.  [c.229]

Порядок растворения карбидов в аустсиите определяется пх относительной устойчивостью, а степень перехода в раствор —их количеством. Так, при наличии в сплаве, например, трех карбидов — А/гСз, /Mg и МС — аустенит снач ла будет насыщаться карбидом /И7С3 (например, СГ7С3), а карбиды (вольфрама) и МС (ванадия) могут остаться в избытке.  [c.355]

Стойкость различных металлов, особенно сплавов железа, резко уменьшается при наличии растворенного в натрии кислорода, даже в небольших ко.пичествах. Поэтому применяемый жидкий натрий, как и сплав Na—iK. должен быть тщательно очищен от кислорода.  [c.560]

На рис. 412 представлена структура отожженного сплава А1 7 4% Си. На фоне алюминиевого твердого раствора (почти чистого алюминия) видны включения uAli). На рис. 413 приведена микроструктура того же сплава после закалки. Структура состоит из гомогенного твердого раствора. Нагрев до температуры закалки привел к полному растворению включе-  [c.570]

Начальный период старения (назовем его первой стадией старения) заключается в том, что в пересыщенном твердом растворе атомы второго компонента (в данном случае атомы меди), расположенные в свежезакаленном сплаве в случайных местах, собираются в определенных местах кристаллической решетки. В результате этого процесса внутри кристалла образуются зоны повышенной концентрации растворенного компонента, так называемые зоны Гинье-Престона (зоны Г. П.).  [c.573]

Исследования Д. А. [Тетропа и др. показывают, что растворение фазы S при последующем старении даст наибольшее упрочнение по сравнению с тем, какое дают другие фазы этой системы. Поэтому в тройной системе А1—Си— Mg наиболее способными к упрочнению при термической обработке являются сплавы, находящиеся вблизи. шнни а,—(между тачками х у). Такие сплйвы называются высокопрочными дуралюминами.  [c.578]

Примеси, растворенные в жидком металле, могут также измельчать зерно и изменять его форму. Примеси при затвердевании в виде тонкого слоя осаждаются на поверхности растущего кристалла и ограничивают его рост. Чем больню скорости охлаждения и заро-, ждения центров кристаллизации,тем больше скорость кристаллизации и тем мелкозерпистее структ ра сплава. При мелкозернистой структуре механические свойства сплава повышаются.  [c.8]

При окислении сплавов более термодинамически устойчивого металла Mt с менее устойчивым металлом Me часто наблюдается образование подокалины — слоя, обогащенного металлом Mt и содержащего растворенный кислород и частицы окисла металла Me (рис. 69). Это явление, получившее название внутреннего окисления, наблюдалось у меди при легировании ее Si, Bj, As, Мп, Ni, Sn, Ti, Zn, у серебра — при легировании его многими другими металлами, у никеля — при легировании его А1, Сг или Fe.  [c.103]


Процессы и вещества, способствующие удалению продуктов анодной реакции е поверхности электрода, называются анодными поляризаторами. Им1] могут быть как процессы механического удаления ионов перемешиванием электролита, так и вторичные реакции, связ1)Ша]ощие выходящий в раствор ион металла в трудно диссоциирующий комплекс или переводящие его п осадок. Примером такой реакции является реакция растворения меди в растворах аммиака. Образование трудно диссоциирующего комплексного иона [Си(ПНз)4] +, сильно понижающего концентрацию ионов меди в электролите, объясняет беспрепятственное течение процесса растворения меди и ее сплавов в аммиачных растворах.  [c.36]

Не всякие торможение коррозионного процесса может быть свя.зано с явлениями пассивации так, например, низкую скорость растворения металлов и сплавов, обусловленную их термодинамической устойчивостью (золото, платина и др), ие называют пассивностью. Защиза металлов и сп,завов лакокрасоч-  [c.59]

Атомы компонента, обладающего коррозионной стойкостью в дампо среде, обозначены крестиками, а атомы неб,загородного компонента—кружками. Атомы и 2 благородного компонента, расположенные в первых двух слоях пространственной решетки, подвергаются вымыванию , поскольку они окружены со всех сторон атомами неблагородного компонента. Растворение поверхностных слоев сплава, происходящее до создания барьера, практически не играет большой роли из-за ничтожной толищны этих слоев.  [c.129]

Для химического оксидирования магния и его сплавов широко применяют растворы двухромовокислого калия с добавками FieKOTopbix веществ-активаторов (NH4 I, Na I), вызывающих растворение пленки для обеспечения ее роста в глубину. Часто магниевые силавы обрабатывают в 15—20%-ном растворе плавиковой кислоты при комнатной температуре. Образовавшаяся пленка фторида магния обладает большей химической стойкостью, чем пленки, полученные в раетворах хроматов.  [c.330]

На рис. 4.23, а показана небольщая часть фазовой диаграммы бинарного сплава А—В, обогащенного компонентом А. Основы фазовых диаграмм рассмотрены в работе [33]. Вместо плавления и затвердевания при единственной температуре Та сплав, содержащий примесь б в Л и имеющий концентрацию В, в идеальном случае плавится в интервале температур от Ту до 7з. Диаграмма на рис. 4.23, а составлена для растворенного вещества В, которое понижает точку плавления вещества А. Заметим, что обе температуры Ту н Тз лежат ниже точки плавления чистого металла А. При охлаждении сплава состава Ву из области жидкости и при условии, что переохлаждение отсутствует, зарождение твердой фазы начинается при температуре Гь Твердая фаза, появившаяся при этой температуре, имеет состав б] и оставляет жидкость состава Ьу. При дальнейшем охлаждении осаждается большее количество твердой фазы, имеющей состав, который изменяется вдоль линии солидуса. Состав оставшейся жидкости изменяется по линии ликвидуса. При температуре Т твердая фаза имеет состав бз, жидкая — Ьз, а при температуре Тз твердая фаза состава бз находится в равновесии с жидкостью состава бз. До сих пор считалось, что скорость охлаждения бесконечно мала, так что всегда поддерживается равновесный состав. Другими словами, твердая фаза состава б], появившаяся первой, успела диффузионно перейти в состав бз, пока температура падала до Тз. Поскольку диффузия в твердом состоянии всегда медленна, а скорость охлаждения не может быть бесконечно мала, концентрационное равновесие никогда не достигается, в результате чего при температуре ниже Тз состав твердой фазы оказывается между 61 и 63, а жидкость с избытком В не затвердеет окончательно, пока температура не достигнет Т .  [c.170]


Смотреть страницы где упоминается термин Сплавов растворение : [c.193]    [c.139]    [c.306]    [c.19]    [c.71]    [c.578]    [c.590]    [c.598]    [c.94]    [c.110]    [c.180]    [c.298]    [c.351]    [c.417]    [c.436]    [c.60]    [c.169]    [c.199]   
Основы учения о коррозии и защите металлов (1978) -- [ c.98 ]



ПОИСК



Испытание сплавов на эрозионное разрушение и диффузионное растворение

Коррозия конструкционных сплавов Коррозия сталей Томатов, О. Н. Маркова, Г. П. Чернова. Влияние легирующих элементов на анодное растворение нержавеющих сталей в средах, содержащих хлор-поны

Механизм анодного растворения сплавов

Механизм растворения сплавов

Основные кинетические предпосылки селективного растворения двухкомпонентных сплавов

Равномерное растворение. Обогащенная зона при равномерном растворении сплава

Растворение

Растворение анодное сплавов

Растворение атомов внедрения в жидких сплавах

Растворение сплаво

Растворение сплаво

Растворение сплаво гетерогенных

Растворение сплаво гомогенных

Ронжин, А. И. Голубев, Г. М. Федорова. Избирательное растворение двухфазного сплава

Селективное растворение и взаимодиффузия компонентов в объеме сплава

Селективное растворение сплаво

Селективное растворение сплаво латуней

Чемоданов, В. М. Княжева, М. А. Дембровский, Д. М. Колотыркин Радиохимическое определение малых скоростей растворения металлов и сплавов с использованием гамма-спектрометрии



© 2025 Mash-xxl.info Реклама на сайте