Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытие электронно-лучевое

Для покрытия электронно-лучевых трубок применяются графитовые суспензии из смеси частичек с размерами 20—50 и менее 5 мкм [6-3]. Для улучшения сцепления с покрываемой поверхностью используются силикат калия, крахмал, резина. Имеются также сухие графитовые препараты с размерами частичек до 3 мкм.  [c.108]

УЛУЧШЕНИЕ СВОЙСТВ МЕТАЛЛИЗАЦИОННЫХ ПОКРЫТИЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТЕРМООБРАБОТКОЙ В ВАКУУМЕ  [c.119]

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]


Электронно-лучевая обработка имеет преимущества, обусловливающие целесообразность ее применения создание локальной концентрации высокой энергии, широкое регулирование и управление тепловыми процессами. Вакуумные среды позволяют обрабатывать заготовки из легкоокисляющихся активных материалов. С помощью электронного луча можно наносить покрытия на поверхности заготовок в виде пленок, толщиной от нескольких микрометров до десятых долей миллиметра. Недостатком обработки является то, что она возможна только в вакууме.  [c.413]

Состав металлических жаростойких покрытий, получаемых методами плакирования, плазменного и электронно-лучевого напыления, можно задавать, исходя из требуемого комплекса служебных свойств. Предварительная оценка жаростойкости и коррозионной стойкости выбранного состава может быть сделана на основе свойств материала покрытия в литом или деформированном состоянии. Однако в отличие от таких материалов с фиксированным составом, содержание легирующих в покрытии изменяется по ходу его службы. Покрытие обедняется компонентами, обеспечивающими образование защитного окисла, и насыщается элементами из сплава, которые ухудшают стойкость покрытия [1].  [c.215]

Следует указать далее на особое структурное состояние и специфические дефекты покрытий, напыленных, в частности, электронно-лучевым методом [2], которые могут оказать влияние на их стойкость к горячей коррозии.  [c.215]

Покрытия были получены с применением электронно-лучевой технологии. Материал покрытия испаряли в вакууме сфокусированным электронным лучом и осаждали на нагретую до 900— 1000" С поверхность образцов. Равномерность толщины покрытия обеспечивали вращением образцов над источником паров. Скорость осаждения составляла 2 мкм/мин. Толщина покрытий 30—80 мкм.  [c.215]

В настоящее время в промышленности начинают применяться жаростойкие конденсированные покрытия типа Ме—Сг—А1—У, получаемые электронно-лучевым и ионно-плазменным методами [1]. Нанесенные в условиях отработанной и стабильной технологии конденсированные покрытия имеют однородный химический и фазовый состав, близкий составу испаряемого сплава. Это свойство конденсированных покрытий позволяет с новых позиций подойти к исследованию характеристик покрытий, а именно определять их на литых материалах, что значительно упрощает методику определения и вместе с тем обеспечивает достаточную точность результатов.  [c.175]

КОРРОЗИОННАЯ СТОЙКОСТЬ, СТРУКТУРА II МЕХАНИЧЕСКИЕ СВОЙСТВА НИКЕЛЕВЫХ СПЛАВОВ И ЛОПАТОК ГТУ С ЭЛЕКТРОННО-ЛУЧЕВЫМИ ПОКРЫТИЯМИ  [c.179]

С целью выяснения возможности осуществлять защиту от коррозии рабочих лопаток энергетических газовых турбин с помощью электронно-лучевого покрытия Со—Сг—А1— проведено комплексное исследование свойств этого покрытия на лабораторных образцах и на натурных лопатках.  [c.179]


Из результатов опытов (рис. 1) видно, что наилучшими защитными свойствами при 800—900 °С обладает электронно-лучевое покрытие Со—Сг—А1. Далее стойкость покрытий уменьшается в следующем направлении воздушно-плазменное Со—Сг—А1, диффузионное Сг—Ре II суспензионное А1—81 алитирование либо ие за-  [c.179]

Представленные результаты лабораторных исследований и их толкование коррелируют с результатами исследований коррозионного разрушения данного покрытия в натурных условиях. Указанное обстоятельство заставляет искать технологические пути для улучшения микроструктуры электронно-лучевых покрытий и уменьшения в них количества дефектов. Только в случае успешного решения этой задачи рассмотренные покрытия окажутся достаточно эффективными и надежными в эксплуатации.  [c.187]

Сформулированы основные принципы создания композиционного материала с покрытиями Ме—Сг—А1, отличающегося физико-химической устойчивостью в условиях работы судовых газотурбинных двигателей в течение планируемого срока службы. На примере электронно-лучевого покрытия Со—Сг—AI—У показана взаимосвязь между физическими свойствами конденсатов, их структурой и интенсивностью коррозионной повреждаемости.  [c.244]

Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на  [c.55]

Сведения о химическом составе иногда можно получить с помощью рентгеновского или электронно-лучевого анализа поверхности покрытия или металлографическим исследованием шлифа готового изделия (под микроскопом или при использовании электронного микроанализатора).  [c.135]

Молибден и другие тугоплавкие металлы (в частности, вольфрам) обычно испаряют электронно-лучевым нагревом в условиях глубокого вакуума (10 —10- мм рт. ст.). Метод вакуумного напыления имеет следующие недостатки 1) большие потери, напыляемого металла 2) загрязнение покрытия остаточными газами в камере и в исходном металле 3) трудность нанесения толстых покрытий тугоплавких металлов из-за низкой летучести и малой скорости испарения осаждаемого металла 4) сложность нанесения равномерных по толщине покрытий на подложки с рельефной поверхностью 5) недостаточная термическая стабильность покрытия из-за большого различия в температурах зон конденсации и испарения 6) невозможность получения текстурированных покрытий из-за сложности регулирования режима осаждения 7) недостаточная адгезия покрытия 8) пористость покрытия. Вследствие этих недостатков данный метод нанесения молибденовых и вольфрамовых покрытий широко не применяется.  [c.106]

Поверхностные свойства обеспечиваются как нанесением защитного слоя или покрытия, так и преобразованием поверхностного слоя металла при помощи химических, физических, механических методов, диффузионным насыщением, методов химико-термической обработки. Активно развиваются методы электронно-лучевой и лазерной закалки, вакуумное физическое и химическое напыление износостойких покрытий, ионное азотирование и др.  [c.199]


В связи с особыми условиями работы элементов газового тракта, в частности лопаток турбин, находящихся под воздействием агрессивной окислительной среды — продуктов сгорания топлива, детали газотурбинного двигателя (лопатки, жаровые трубы камер сгорания) должны иметь защитные покрытия, наносимые конденсацией (электронно-лучевым, вакуумно-плазменным и дру-  [c.77]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

Для температуры 800 С, предетавляющей наибольший интерес применительно к условиям эксплуатации лопаток современных ГТУ, рассчитаны значения относительной долговечности покрытий электронно-лучевое Со—Сг—А1—V— 7.9, плазменное Со—Сг—А1—У — 4.2, диффузионное Сг—Ре — 4.5, суспензионное А1—81 — 2.9, али-  [c.180]

Производительность установок определ i-ется непрерывностью ведения процесса испарения и согласованием времени выполнения ряда технологических операций (загрузки деталей, нагрев, осаждение покрытия) с операциями охлаждения деталей, извлечения из вспомогательной камеры, загрузки новой партии лопаток. Для решения этих задач в установке ES -30/300S (рис. 1. 9) фирмы Лей-больд-Гереус предусмотрены четыре шлюзовые устройства (по два с каждой стороны камеры испарения). После подогрева лопаток в промежуточной камере детали вводятся в рабочую камеру, оснащенную прямоугольным испарителем, где на них наносится покрытие. Электронно-лучевой испаритель состоит из водоохлаждаемого медного тигля 3 (120 х 4S0 мм), через днище которого снизу вверх одновременно подаются пять слитков, и двух аксиальных электронно-лучевых пушек 12 мощностью 150 кВт каждая. Для подогрева изделий в процессе осаждения покрытия применяются дополнительные электронные пушки, которые снабжены отклоняющей системой, разворачивающей лучи на угол более 90°.  [c.432]

ВНИИАВТОГЕНМАШ, работая в области металлизации распылением, провел исследования по определению возможностей улучшения металлизационных покрытий электронно-лучевой термообработкой в вакууме. Целью этой работы было получение тонких плотных покрытий из различных металлов и сплавов, хорошо приплавленных к основанию.  [c.120]

Основной способ сварки плавлением — электродуговая сварка — имеет много разновидностей, связанных со степенью механизации, — ручная, полуавтоматическая, автоматическая, с применением различных защитных веществ — толстого покрытия на электродах (при ручной сварке), флюсов, защитных газов или порониговой проволоки при механизированной сварке, контролируемой атмосферы (защитных газов или вакуума) при некоторых способах дуговой и электронно-лучевой сварки. Сварка плавлением применяется для весьма широкого круга цветных металлов и сплавов, а также неметаллов — стекла, керамики, графита.  [c.5]

Электронно-лучевая трубка устроена следующим образом. Изображение (информация), выдаваемое ЭЦВМ, воспроизводится на экране, покрытом с внутренней стороны материалом, в котором под воздействием электронов возникает свечение (флюоресценция), образующее черные и белые элементы изображения. Электроны эмми-тируются (выбрасываются) из накаленного катода трубки и фокусируются электрическими или магнитными полями в острый электронный луч, который и заставляет светиться ту или другую точку экрана (на рис. 485 точка изображена красным цветом).  [c.292]

Способы сварки алюминия и его сплавов. Основными способами сварки алюминия и его термонеупрочняемых сплавов являются сварка в инертных газах, по флюсу и под флюсом, ручная покрытыми электродами, контактная. Используют также газовую сварку, электрошлаковую сварку угольным электродом. Для термически упрочняемых сплавов применяют преимущественно механизированные способы сварки в инертных газах, электронно-лучевую, плазменно-дуговую.  [c.134]

Для электронно-лучевых катодов иногда используют покрытия с оксидами щелочноземельных элементов и применяют неметаллические материалы, например ТНОг, лантанборид LaBe и др. Они имеют самую низкую работу выхода (до 1,0...1,2 эВ) и высокую эмиссионную способность при меньших температурах нагрева, чем для катодов из чистого вольфрама.  [c.68]

Вну "пенияя поверхность стеклянного баллона электронно-лучевой трубки против анода покрыта тонким слоем кристаллов,  [c.174]

Электронно-лучевая обработка может быть эффективно использована для реализации процессов перемешивания в жидкой фазе нанесенных на поверхность материала покрытий [154]. Подобная модификация особенно эффективна для получения новых фаз в системах, мало смешиваемых в твердом состоянии, Toflutnna перемешанного слоя зависит от плотности энергии пучка. Увеличение плотности энергии пучка электронов способствует легированию элементами покрытия глубинных слоев, превышающих исходную толщину покрытия [154]. Кроме того, импульсный нагрев, сопровождаюпщй облучение, приводит к образованию новых химических соединении, твердых растворов и аморфных фаз.  [c.253]


Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций.  [c.73]

Характерными дефектами покрытий, полученных методом электронно-лучевого напыления, являются каналы, идущие внутрь покрытия от его наружной поверхности. Эти дефекты уменьшают стойкость к горячей коррозии и окислению, облегчая проникновение газов в покрытие. Замечено, что каналы образуются только при вращении образцов и соответствуют неровностям их поверхности, а глубина их проникновения в покрытие зависит от величины неровностей. В случае грубо опескоструенной поверхности детали каналы пронизывают всю толщину покрытия и достигают его границы со сплавом (рис. 3, а). Риски, остающиеся на поверхности детали после шлифования, образуют дефекты в напыленном покрытии в том случае, если они определенным  [c.218]

Исследована окалиностойкость покрытий Ме—Сг—А1—У, полученных методом электронно-лучевого напыления на сплав ЖС6К, и склонность их к газовой солевой коррозии. Изучены особенности диффузионного взаимодействия одного из наиболее коррозионностойких покрытий Со—Сг—А1—У со сплавом ЖС6К. Обсуждается влияние дефектов структуры электронно-лучевых покрытий на их стойкость. Лит. — 5 назв., ил. — 3, табл. — 2.  [c.270]

Коррозионную стойкость электронно-лучевого покрытия исследовали в сравнении с покрытиями, наносимыми другими методами — диффузионным (Сг—Ре), воздушно-плазменным (Со—Сг—А1— ), суспензионным (шликерным) (А1—81), и полученным простым алитированием. Все покрытия наносили на образцы из сплава ЖС6К. Их испытания на коррозионную долговечность проводили в золе газотурбинного топлива по методике НПО ЦКТИ.  [c.179]

Сплошные линии — образцы из сплава ЖС6К с различными покрытиями (1 — алитирование) пунктир — образцы из лопаток (ЭИ893ВД) с электронно-лучевым покрытием Со—Сг—А1— (2, 3 — входная н выходная кромки соответственно),  [c.180]

Испытание образцов из сплавов ЖС6К и ЭИ893ВД на длительную прочность в золе газотурбинного топлива при 800 и 850 °С показало, что электронно-лучевые покрытия Со—Сг—А1— и Со—Сг—Ре—2г02 надежно защищают их от коррозионного воздействия среды, вызывающей резкое снижение жаропрочности незащищенных образцов (рис. 2).  [c.181]

Влияние электронно-лучевого покрытия Со—Сг—А1— на усталостную прочность сплава ЭИ893ВД исследовали прп температурах 750 и 20 °С с частотой нагружения 220 Гц на базе 10 циклов. Прп высокой температуре предел выносливости образцов с покрытием после восстановительной термообработки (применяемой после нанесения покрытий на лопатки) равен 270 МПа, что всего на 5 % ниже предела выносливости образцов без покрытия (рис. 3), а при комнатной температуре — ниже на —15 %, что допустимо ввиду отсутствия в лопатках циклических нагрузок при 20 "С.  [c.181]

Как установлено микрорентгеиоспектральным и микроструктур-пым анализами, электронно-лучевое покрытие Со—Сг—А1— характеризуется равномерным распределением компонентов по его толщине, отсутствием в его составе кислорода (снижающего пластич-  [c.181]

Исходя из результатов лабораторных исследований, было принято решение о нанесении электронно-лучевого покрытия Со—Ст— А1— па рабочие лопатки (сплав ЭИ89.313Д) первой ступени турбин  [c.182]

Нами была сделана попытка выявить особенности коррозионного разрушения электронно-.лучевого покрытия указанного состава в среде, содержащей NaoSO и Na l. Испытаниям подвергали цилиндрические образцы диаметром 8 п длиной 20 мм с покрытпе.м толщиной 60—70 мкм.  [c.184]

Описаны результаты комплекса исследований свойств (коррозионная стойкость, структура, длительная, усталостная и термоусталостная прочность и др.) защитных покрытий и материала лопаток газовых турбин. Обоснована применимость электронно-лучевого покрытия Со—Сг—А1—У для защиты от коррозии рабочих лопаток ТВД и ТНД установок типа ГТ-100, работающих в пиковом реяише.  [c.244]

Влияние покрытий на эксплуатационные характеристики жаропрочного сплава, применяемого при изготовлении лопаток газовых турбин, изучалось [223] на установке Коффина с построением кривых термической усталости. Для выяснения характера разрушения оценивали изломы и проводили металлографический анализ микрошлифов продольного сечения. Многокомпонентные покрытия СоСгА1 , КЮтА1 , Ni o rAlY наносились на образцы с применением электронно-лучевой технологии со скоростью конденсирования 2 мкм/мин.  [c.129]

Электронно-лучевые приборы в течение первых 2 месяцев теряют товарный вид. Такие детали, как щтырьки, кольца, корпуса, предварительно полированные, за это время значительно прокорродировали. Через год после начала испытаний кольца и корпуса из ковара с химической полировкой покрылись продуктами коррозии приблизительно на 85% всей поверхности. Никелевые покрытия по латуни Л62 в течение 6 месяцев оказались более коррозионностойкими по сравнению с коваром, но затем происходит разрушение поверхности примерно на 70%.  [c.80]

Ковар, защищенный никелевым покрытием 15 мкм. а также латунь марок Л62 и Л68, защищенная гальваническим никелем 12 мкм и более, с последующей пропиткой гидрофобной жидкостью ГКЖ94, анодированный алюминий с последующей пропиткой хромпиком и церезином в субтропиках обладают достаточной стойкостью. Изготовление электронно-лучевых приборов из сплава 29НК (ковара) для субтропического климата является неприемлемым. Все детали, изготовленные из сплава 29НК с предварительной химической полировкой, за 7 месяцев испытаний подверглись сильной коррозии (70—80% поверхности).  [c.81]

К газотермическому напылению относят методы, при которых распыляемый материал нагревается до температуры плавления п образовавшийся двухфазный газопорошковый поток переносится на поверхность изделия. Это процессы плазменного напыления, электро-дуговой металлизации, газопламенного напыления (непрерывные методы) и детонационно-газовый метод нанесения покрытий (импульсный метод). Покрытия формируются из частиц размером в десятки микромиллиметров. Термическим методом покрытие можно наносить также в вакуумной технологической камере (термовакуумное напыление), при этом материал покрытия нагревают до состояния пара, и паровой поток конденсируется на поверхности изделия. При использовании этих методов покрытие образуется из атомов или молекул вещества, а в некоторых случаях (электронно-лучевое плазменное, с помощью плазменных испарителей) — из ноиов испаряемого материала. Следует отметить, что чем выше степень ионизации потока вещества, тем выше качество покрытий.  [c.138]



Смотреть страницы где упоминается термин Покрытие электронно-лучевое : [c.130]    [c.50]    [c.181]    [c.220]    [c.164]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.43 , c.488 ]



ПОИСК



Морозов, К. Д. Клюева. Улучшение свойств металлизационных покрытий электронно-лучевой термообработкой в вакууме



© 2025 Mash-xxl.info Реклама на сайте