Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальные исследования испытания

Основным техническим базисом для проведения современных экспериментальных исследований, испытаний, контроля и диагностирования технологического оборудования и промышленных роботов являются измерительно-информационные системы (ИИС),  [c.162]

При экспериментальном исследовании испытан пневмоцилиндр, схема которого показана на рис. 1, а. До начала торможения 222  [c.222]

Экспериментальные исследования показали, что значение коэффициентов трения на контактной поверхности зависит от многих факторов способа сборки, удельного давления р, шероховатости поверхности, рода смазки поверхностей, применяемой при запрессовке деталей, скорости запрессовки и пр. Поэтому точное значение коэффициента трения может быть определено только испытаниями при заданных конкретных условиях . В приближенных расчетах прочности соединения стальных и чугунных деталей принимают  [c.87]


Кроме отмеченных особенностей деформирования материала в условиях ОНС в области малоцикловой усталости встает вопрос о влиянии средних или максимальных напряжений на долговечность. Поясним, почему в подавляющем большинстве экспериментальных исследований этому вопросу не было уделено должного внимания. Дело в том, что при одно- и двухосных испытаниях в области малоцикловой усталости наибольшее различие максимальных в цикле напряжений Ощах реализуется при  [c.132]

Необходимость проводить в первую очередь экспериментальные исследования различных аспектов сопротивления материалов обусловлена тем, что разупрочняющее влияние перечисленных выше факторов, имеющих место в эксплуатации, нельзя учесть расчетным путем. Чтобы правильно учесть влияние этих факторов на показатели конструктивной прочности материалов, нужно поставить соответствующие хорошо продуманные экспериментальные исследования по методикам, разработка которых часто представляет самостоятельный научный интерес. К тому же установить соответствующие аналитические критериальные зависимости можно только на основе большого количества экспериментальных данных о свойствах материала. Получают их при испытаниях изготовленных из этого материала специальных образцов в тех или иных условиях силового и теплового воздействий заданной длительности и режима изменения этих воздействий во времени.  [c.662]

Существующие в настоящее время способы экспериментального исследования напряженных конструкций сводятся, так или иначе, к прямому определению деформаций, возникающих в испытуемом объекте. Напряжения определяются косвенно через деформации на основе закона Гука. В случае пластических деформаций определение напряжений при испытаниях конструкций обычно не производится и определяется только разрушающая нагрузка или то значение силы, при котором наблюдаются признаки возникновения пластических деформаций.  [c.506]

Муаровый эффект представляет собой метод экспериментального исследования деформаций и напряжений, который в отличие от остальных экспериментальных методов дает наглядность и позволяет получить картину деформаций по всей поверхности объекта исследования непосредственно по стадиям в процессе испытаний.  [c.338]

В связи с тем что в соотношениях (5.94), (5.108), (5.113), (5.116) четко указаны аргументы функционалов пластичности а, N, Мп, то становится понятным, в каких направлениях вести экспериментальные исследования. Это испытания по плоским и пространственным многозвенным ломаным, по траекториям постоянной кривизны и кручения, по траекториям, в которых ломаные сочленяются с криволинейными участками, и т. д.  [c.107]


Предлагаемая методика, базирующаяся на испытании в контейнере кольцевых образцов, позволяет с щественно снизить материальные и трудовые затраты, связанные с проведением подобного рода экспериментальных исследований по определению напряжений и деформаций в толстостенных оболочковых констр кциях.  [c.210]

Любая отрасль человеческих знаний, в том числе такая инженерная как сопротивление материалов, оперирует некоторым набором исходных определений, понятий и гипотез. С одной стороны, используются фундаментальные определения и понятия из математики, физики, общей механики. С другой, — сопротивление материалов также базируется на данных экспериментальных исследований, из которых важнейшими являются результаты испытаний на растяжение и сжатие образцов конкретных материалов. Теоретическое осмысление опытных данных  [c.9]

Установки для исследования решеток профилей. Все экспериментальные исследования работы элементов турбомашин могут быть разделены на две группы первая — статические испытания,  [c.469]

Снижение запасов прочности по критической температуре хрупкости и разрушающему напряжению ниже указанных возможно при наличии результатов натурных ИЛИ крупномасштабных модельных испытаний до разрушения, а также экспериментального исследования эксплуатационной нагруженности и температурных полей в элементах конструкций.  [c.67]

Экспериментальные исследования прочности материалов получили в настоящее время весьма широкое развитие. Сопротивление материалов, -с одной стороны, связано с материаловедением и учением об испытании материалов, с другой стороны, тесно связано с теоретической механикой. Сопротивление материалов опирается на законы и теоремы теоретической механики и использует,  [c.9]

Все вновь разрабатываемые СНК перед постановкой их на серийное производство проходят государственные приемочные испытания (ГПИ) с целью обеспечения единства и требуемой точности измерений и контроля в стране, повышения технического уровня и качества СНК и совершенствования их номенклатуры. При ГПИ проводят экспертизу технической документации и экспериментальные исследования СНК, в процессе которых определяют степень соответствия СНК установленным нормам, потребностям народного хозяйства и современному уровню приборостроения, а также  [c.27]

На рис. 35 приведено два примера экспериментальных исследований изменения выходных параметров изделия X (/) и их стохастической природы. На рис. 35, а показаны результаты испытания уровня настройки электро-контактного датчика БВ-1005 [79]. В процессе эксплуатации происходит смещение уровня настройки, причем в результате действия многих  [c.122]

Приводятся результаты экспериментального исследования покрытий на основе жаростойких органосиликатных материалов при различных видах механического (истирание, изгиб, гидроабразивный износ) и химического воздействий. Показано, что наиболее прочным и стойким из испытанных видов покрытий является покрытие ОС-51-03 красное, холодного отверждения.  [c.236]

Группу Определение механических свойств покрытий составляют методы оценки упругих, прочностных и пластических свойств. Из четырех известных констант упругости для покрытий обычно определяются модуль Юнга и коэффициент Пуассона. Публикаций об экспериментальном исследовании других констант упругости покрытий — модуле объемной упругости и модуле сдвига, по-видимому, нет. Неясным остается вопрос о влиянии пористости на модуль упругости. Одной из самых распространенных и наиболее легко оцениваемых характеристик покрытий является микротвердость. Методика определения микротвердости, обладая несомненными достоинствами (неразрушающее испытание, оперативность измерения, простота и доступность оборудования и т. д.), в то же время дает большое количество информации. Когезионная прочность покрытий (чаще всего, предел прочности) исследуется в продольном и поперечном направлении. Слоистая структура покрытий и резко выраженная анизотропия свойств обусловливают большой разброс результатов измерений прочности. Пластические свойства, по-видимому, могут быть определены только для металлических низкопрочных покрытий.  [c.17]


Обзор экспериментальных исследований никелевого сплава IN 718 на воздухе при нагреве до 650 °С свидетельствует о нелинейности процессов химико-механического взаимодействия вдоль повреждающихся границ зерен при выдержке материала под нагрузкой [45]. Наличие выдержки при испытании компактных образцов толщиной  [c.355]

Экспериментальные исследования ползучести при сложнонапряженном состоянии проводятся систематически [99]. На первом этапе в большинстве случаев испытания проводились при постоянных напряжениях и изучалась преимущественно стадия квазистационарной ползучести. Позже были начаты исследования ползучести при сложнонапряженном состоянии в условиях переменных нагрузок.  [c.163]

Вместе с тем в реальных условиях работы элементов конструкции могут существовать более сложные условия изотермического и неизотермического малоциклового нагружения. Существенный интерес представляет экспериментальное исследование закономерностей деформирования при типах малоциклового нагружения, отличающихся от рассмотренных ранее режимов нагружения, близких к простому. Практический интерес представляют, например, малоцикловые испытания при наличии компоненты нагружения, неизменной во время циклических испытаний, либо проведение малоцикловых нагружений при переменных температурах. При этом важным представляется экспериментальное обоснование применимости деформационной теории пластичности с оценкой точности расчетов при ее использовании для указанных типов сложных малоцикловых режимов нагружений.  [c.106]

Таким образом, разница в уровне номинальной напряженности труб, уложенных в грунт, и труб, подвергнутых экспериментальным исследованиям, составляет лишь 2,5%. Следовательно, условия работы металла труб у действующего трубопровода и при натурных испытаниях (за исключением зон, близко расположенных к приваренным эллиптическим днищам,— менее одного диаметра трубы) можно считать сходственными.  [c.168]

В работе [31] изложены результаты теоретического и экспериментального исследования по изучению термопрочности дисков стационарных турбин. Испытывали диск в разгонной установке, как это следует из рис. 4, при достаточно жестких условиях теплового нагружения. Нагрев диска начинали при достижении предельной частоты вращения (п=12 700 об/мин), которую выдерживали постоянной в течение 60 мин температура на ободе диска составляла 750°С, в то же время градиент температур по радиусу в начальный период достигал 650° С. После 13 циклов испытаний в диске была обнаружена магистральная трещина, идущая от дна лопаточного паза в полотно диска. Причиной столь быстрого разрушения диска, как показал расчет, явились циклические упругопластические деформации раз-  [c.9]

Изложены результаты экспериментального исследования термической усталости алюминиевых сплавов. Показано, что скорость распространения трещин термической усталости зависит от свойств материала и ряда параметров, характеризующих испытания.  [c.438]

Расчетный метод основан на использовании информации, получаемой с помощью теоретических или эмпирическ1 .х зависимостей. Этим методом пользуются главным образом при проектировании продукции, когда она еще не может быть объектом экспериментальных исследований (испытаний). Расчетный метод применяют для определения значений показателей производительности, безотказности, долговечности, сохраняемости, ремонтопригодности и др. При необходимости величины показателей качества находят с использованием нескольких методов. Например, показатель ремонтопригодности можно определять средним значением трудозатрат (в человеко-часах), необходимых для осуществления данной категории ремонта. В этом случае используется комбинация регистрационного метода (подсчет лиц определенной квалификации, занятых ремонтом) с измерительным (измерение времени, затраченного на ремонт).  [c.464]

Влияние объемного сжатия при стационарном нагружении исследовали на специально разработанном стенде высокого давления применительно к сплаву ХН55МВЦ [185]. Во всех опытах температура испытаний составила 1000°С, напряжение а — = 10 МПа, однако одни образцы испытывали при отсутствии всестороннего сжатия, другие — при всестороннем давлении 8 МПа. Наряду с экспериментальным исследованием был проведен расчет долговечности по двум режимам. Первый режим нагружения характеризовался Оп = о,-= 10 МПа, а2 = оз = 0 второй — О/ = 10 МПа, Оп = 2 МПа, аг = оз = —8 МПа.  [c.175]

Как утке отмечалось в разделах 3.2 и 4 I, в качестве метода экспериментального исследования напряженно-деформированного состояния рассматриваемых образцов моделей, ослабленных мягкими прослойками, использовали метод NtyapoBbix полос. При этом в соответствии с методикой, изложенной в работах /135, 141/, на плоские торцевые поверхности кольцевых образцов наносили рабочие растры с линиями, параллельными осям симметрии образца л и>< (см. рис 4 3). Испытания кольцевых образцов в контейнере проводились с фиксацией картин мларо-вых полос и V . перемещений в направлении осей х и v. Определение компонент тензора напряжений и десрормаций Од., и Ej , Уду проводили путем обработки полуденных картин муаровых полос по рекомендациям, приведенным в работах /136, 137/.  [c.210]

Если бы ход диаграммы испытания материала вблизи предела пропорциональности был бы нам заранее известен, то конечно проще всего было бы ввести в формулу Эйлера поправку, воспользовавшись законом изменения местного модуля упругости. Но беда в том, что этот довольно тонкий переход от закона Гука к криволинейному участку диаграммы трудно поддается экспериментальному исследованию, да к тому же и нестабилен. Дело усложняется тем, что по мере приближения к пределу пропорциональности, сначала исподволь, а затем и весьма интенсивно, в сжатом стержне начинают накапливаться пластические деформации. А при возникновении пластических деформаций сама постановка задачи устойчивойти претерпевает качественные изменения.  [c.152]


Проведение каких-либо экспериментальных исследований, выходящих за рамки рекомендованного программой перечня лабораторных работ, представляется мало вероятным, так как лабораторная база техникумов, как правило, крайне ограничена. Все же возможно проведение, например, иепытаний на растяжение или сжатие каких-либо конструкционных материалов, не подвергавшихся испытаниям при проведении лабораторных работ. Можно также определять такие механические характеристики, как предел пропорциональности и предел упругости, которые при проведении обычных лабораторных работ не определяют.  [c.43]

Здесь А и и — эмпирические коэффициенты, Д/f =/ тах — йГщт— перепад (размах) коэффициента интенсивности напряжений за один цикл нагружения, N — число циклов. Многочисленные экспериментальные исследования хорошо подтверждают эту формулу, причем показатель стеиепи п для разных материалов располагается в интервале от 2 до 7 (чаще всего п = 4). Чем больше показатель степени и, тем более хрупкое состояние материала наблюдается при испытании.  [c.259]

В условиях эксплуатации в отличие от условий эксперимента, при котором получены зависимости, приведенные на рис. 1.2, одновременно могут изменяться нагрузка (контактное давление Р), скорость скольжения V и температура Т. Поэтому для надежного прогноза поведения узла трения в эксплуатации необходимо знать зависимости интенсивности изнапшвания и коэффициента трения от названных внешних факторов. Для получения таких зависимостей проводят многофакторные эксперименты с исггользованием математических методов планирования эксперимента (испытаний материалов ка трение и износ). Такие экспериментальные исследования осуществлялись для исследования свойств материала криолон-3. Был проведен полный факторный эксперимент типа N = S - при количестве варьируемых факторов К = 3  [c.29]

Экспериментальное исследование массоотдачи в частично закрученных потоках выполнено с использованием входного устройства, показанного на рис. 1.4/1 [ 12]. Конструкция и геометрические характеристики рабочего участка, методы создания и измерения массовых потоков с поверхности испарения были такими же, как и при исследовании полностью закрученных потоков, и описаны в разд. 3.2. Входные устройства имели = = 0,1...0,5, величина изменялась в ольпах от 0,15 до 0,485, геометрические характеристики испытанных завихрител указаны в табл. 1.1.  [c.167]

Экспериментальное исследование кинетики коррозии стали 12Х1МФ под влиянием летучей золы назаровского угля в первоначальной стадии проводилось по изложенной в гл. 3 методике с одной особенностью — после каждого цикла испытания с опытных образцов оксидная пленка снималась полностью. Поскольку абсолютное количество корродирующего материала из-за небольшой длительности испытания было малым, то для получения среднестатистических данных те же образцы после полного снятия оксидной пленки испытывались многократно — от 10 до 20 раз. При этом установленная средняя глубина коррозии отличалась не более чем на 20% от глубины коррозии, определенной на основе уменьшения массы образца после каждого цикла снятия оксидной пленки.  [c.162]

Экспериментальные исследования проводились по методике с определением уменьшения массы плоских образцов, покрытых обмазкой из поташа и аэросиля в соотношении 40 1 по массе при температурах 540—650 °С для перлитных сталей и 580—680 °С для ферритно-мартенситной и аустенитной сталей. Обмазка обновлялась на образцах через каждые 10 ч. Образцы в печах располагались в потоке продуктов сгорания газа со следующим составом 02 — 4,1% СО2—9,9% Н2О—15,4%. Максимальная продолжительность испытаний составляла 3000 ч.  [c.167]

Важно подчеркнуть, что пороговая величина скорости роста усталостной трещины получена равной Vis 2,5-10 м/цикл, что близко к статистически среднему размеру ячейки дислокационной структуры на границе перехода в процессе пластической деформации от мезоуровня I к мезо-уровню II (см. главу 3). Указанные данные по монотонному растяжению образцов подтверждаются результатами экспериментальных исследований сталей в области малоцикловой усталости при постоянном уровне пластической деформации [61]. В испытанных образцах исследовали дислокационную структуру, оказалось, что фрагментированная дислокационная структура представляет собой ячейки и стенки дислокаций. Выполненный статистический анализ размеров фрагментов показал, что при всех уровнях циклической пластической деформации размер ячейки (1,5-2,0) 10 м встречается наиболее часто (см. рис. 3.13). Важно подчеркнуть, что с возрастанием длительности нагружения до разрушения относительная частота формирования ячеек или стенок с указанным размером также возрастает. Это дает основание полагать, что прирост усталостной трещины в пределах указанного размера контролируется одним механизмом разрушения, а далее происходит усложнение механизма разрушения, что должно иметь отражение в кинетическом процессе и описывающих этот процесс кинетических уравнениях.  [c.193]

Дальнейшее совершенствование автомобильного парка предполагает последовательное расширение теоретических и экспериментальных исследований и выполнение ряда значительных конструкторских и технологических разработок. Результаты многих исследовательских работ и многие новые инженерные решения воплощены в конструкциях автомобилей, вновь осваиваемых в серийном и массовом производстве. Отраслевые научно-исследовательские институты, специализированные проектно-конструкторские организации и заводские лаборатории располагают квалифицированными кадрами исследователей и конструкторов и совершенным оборудованием. В 1966 г. в Дмитровском районе под Москвой закончено строительство первого в СССР и одного из крупнейших в мире автомобильного полигона с 14-километровой кольцевой цементобетонной дорогой для испытания автомобилей на скоростных режимах, с 18,5-километровой кольцевой грунтовой дорогой переменного профиля, включая труднопроходимые участки, со специальными испытательными дорогами для динамометрических исследований, определения взаимодействия движущихся автомобилей с различными дорожными покрытиями и т. д. Все это обеспечивает получение эффективных решений кардинальных проблем безопасности движения с большими скоростями, применения новых конструкционных материалов, нейтрализации выбрасываемых в атмосферу выхлопных газов и использования новых источников энергии, разработки легкосменных узлов, облегчающих техническое обслуживание и ремонт автомобилей, повышения экономичности автомобилей и других проблем, характерных для основных направлений развития автомобилестроения и автомобильного транспорта в ближайший период.  [c.274]

В 30-х годах М. В. Келдышем, Н. Е. Кочиным и М. А. Лаврентьевым были разработаны теоретические основы гидродинамики так называемого подводного крыла, и тогда же А. П. Владимировым, И. Н. Фроловым и Л. А. Эпштейном были проведены в Центральном аэрогидродинамическом институте соответствующие экспериментальные исследования. С1943 г. на заводе Красное Сормово под руководством Р. Е. Алексеева начались работы по проектированию опытных скоростных судов на подводных крыльях и в 1957 г.— после длительных испытаний моделей и опытных образцов — в состав действующего речного транспортного флота вошло первое судно на подводных крыльях — пассажирский теплоход Ракета (рис. 81), рассчитанный на 66 мест для сидения, снабженный двигателем мощностью 820 л. с. и развивающий скорость до 60—70 км час. Еще через два года была начата постройка более крупных пассажирских судов этой группы — теплоходов типа Метеор , каждый из которых рассчитан на 150 пассажиров и снабжен двумя дизельными двигателями общей мощностью 1800 л. с. С 1961 г. ведется постройка 260-местных судов на подводных крыльях типа Спутник (см. табл. 15), а в 1964 г. был передан в эксплуатацию газотурбоход Буревестник — наиболее быстроходное судно этого класса, снабженное двумя авиационными газотурбинными двигателями и водометными движителями и развивающее скорость до 95—100 км1час. В 1954 г. было построено первое морское пассажирское судно на подводных крыльях — теплоход серии Комета , и с 1961 г. ведется строительство более крупных скоростных морских судов серии Стрела . За разработку и освоение новых типов скоростных судов группе работников завода Красное Сормово (Р. Е. Алексееву, Н. А. Зайцеву, Л. С. Попову, И. И. Ерлыкину и др.) и капитану-испытателю В. Г. Полуэктову присуждена Ленинская премия 1962 г.  [c.303]


В 1918 г. была проведена национализация авиационных заводов и передача их в ведение ВСНХ. В том же году был основан и начал работать Центральный аэро-гидродинамический институт (ЦАГИ) — научно-исследовательский центр, специализированный на выполнении теоретических и экспериментальных исследований в области авиационной техники, до 1921 г. возглавлявшийся Н. Е. Жуковским. Тогда же (с весны 1918 г.) под руководством В. П. Ветчинки-на (1888—1950), одного из учеников и ближайших сотрудников Жуковского — начала систематические испытания самолетов летучая (летноиспытательная) лаборатория Московского высшего технического училища. В 1919 г. последовало учреждение первого учебного заведения (Московского авиатехникума) для подготовки авиационных специалистов. Наконец, в 1920 г. начал функционировать научно-опытный аэродром Военно-Воздушных Сил Республики. В 1926 г. он был реорганизован в  [c.331]

Экспериментальные исследования коррозионно-усталостной долговечности плоских образцов трубной стали (размерами 385 X X 38 X 12 мм) в условиях малоциклового нагружения (20 циклов в минуту) по описанной выше методике показали, что механохи-мическая обработка поверхности образцов увеличивает число циклов до разрушения в 3%-ном хлориде натрия в 1,6 раза, доводя выносливость в коррозионной среде до уровня выносливости необработанных образцов при испытаниях на воздухе.  [c.258]

Итоговое уравнение предельной кривой (5.10) получают суммированием зависимостей (5.11) и (5.12). Зависимость (5.10) неоднократно изменяли с целью сокращения объема необходимых экспериментальных исследований для определения постоянных. На основании результатов испытания ряда материалов для случая нагружения при нормальной температуре Мэнсон рекомендует следующие выражения для определения постоянных  [c.117]

Расчет гидравлических и тепловых режимов работы газопроводов возможен в том случае, когда известны теплофизические характеристики грунтов, в которых они расположены. Следует отметить, что до настоящего времени грунты Западной Сибири недостаточно изучены и требуют дополнительных и эксплуатационных, и экспериментальных исследований. Авторы считают целесообразным использовать данные, полученные при тепловьрх испытаниях существующих газопроводов, при проектировании новых.  [c.7]

В качестве подтверждения правильности полученных теоретических закономерностей приведем результаты экспериментальных исследований. На рис. 24 показаны построенные по экспериментальным результатам диаграммы предельных напряжений, полученные Т. Гарнеем при испытаниях на усталость плоских образцов с приваренными ребрами жесткости (кривая 1) и накладками (кривая 2). В обоих случаях образцы после сварки подвергали отжигу, чтобы исключить влияние остаточных сварочных напряжений. Образцы с приваренными ребрами разрушались при нагружении с различной асимметрией  [c.54]


Смотреть страницы где упоминается термин Экспериментальные исследования испытания : [c.66]    [c.137]    [c.38]    [c.58]    [c.61]    [c.205]    [c.135]   
История науки о сопротивлении материалов (1957) -- [ c.0 ]



ПОИСК



Автоматизация экспериментальных исследований и технологических испытаний ДОЭ

Анализ данных экспериментальных исследований по испытанию опытно-производственной установки

ИССЛЕДОВАНИЕ НАДЕЖНОСТИ ИЗДЕЛИИ НА ЭТАПЕ ЭКСПЕРИМЕНТАЛЬНОЙ ОТРАБОТКИ В.М. ТрухаЦель и виды испытаний

Колебания - Возбудители при испытаниях фазовый определения декремента 317 Определение гидродинамических параметров 370 - Экспериментальные исследования

Методы экспериментальных исследований и испытаний

Общая методология экспериментальных исследований и испытаний

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ТРЕЩИНОСТОЙКОСТИ МАТЕРИАЛОВ ПРИ ИСПЫТАНИИ ЦИЛИНДРИЧЕСКОГО ОБРАЗЦА С КОЛЬЦЕВОЙ ТРЕЩИНОЙ

Экспериментальное исследование



© 2025 Mash-xxl.info Реклама на сайте