Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокопрочная сталь конструкционная

Высокопрочная сталь конструкционная 3—204  [c.500]

ВЫСОКОПРОЧНАЯ СТАЛЬ — конструкционная легированная сталь, обработанная термическими, термомеханическими и другими способами па высокую прочность.  [c.28]

По результатам испытаний, полученным при различных сочетаниях переменных стих, строят диаграммы в координатах СТо — Та или в относительных величинах ста/ст и Та/т . Точки таких диаграмм определяют напряженные состояния, характеризуемые величинами Ста и Та при СЛОЖНОМ напряженном состоянии. Типичная диаграмма для конструкционных сталей, построенная по экспериментальным данным, показана на рис. 584 (кривая /). Она соответствует дуге окружности. Для высокопрочных сталей и чугунов экспериментальные данные располагаются ближе к эллиптическим дугам (рис. 584, кривая 2).  [c.664]


Для массовых конструкционных, строительных и других сталей подразумевается повышение прочности на 15—30%, для высокопрочных сталей достижение уровня —3000 МПа и выше.  [c.530]

За основу была принята схема свободнонесущего, хорошо обтекаемого скоростного самолета-моноплана с увеличенной нагрузкой на крыло, с гладкой обшивкой и потайной клепкой, закрытой кабиной летчика и с убирающимся в полете шасси, определившая значительное снижение лобового сопротивления (примерно на 45% у самолетов-истребителей и на 30—33% у тяжелых самолетов). Кроме того, были применены так называемые средства механизации крыльев (щитки, закрылки, предкрылки и выдвижные подкрылки с воздушными, гидравлическими и электромеханическими системами привода) для увеличения подъемной силы при посадочных углах атаки. Тогда же началось освоение авиационных двигательных установок большой мощности с хорошо обтекаемыми капотами и радиаторами, с воздушными винтами изменяемого шага и с приводными нагнетателями, намного увеличившими высотность двигателей (свойство сохранения постоянства мощности до расчетных высот полета). К тому же времени относилось использование новых конструкционных материалов — различных марок высокопрочной стали и легких сплавов.  [c.343]

Весьма перспективными являются обладающие высокой конструкционной надежностью плакированные трехслойные композиции типа высокопрочная сталь + нержавеющая аустенитная сталь или тугоплавкий металл + жаростойкий сплав II—3).  [c.238]

Естественно, что эти трудности, крайне ограничившие использование высокоэффективных методов упрочнения, вызвали многочисленные попытки повысить пластичность и снизить чувствительность к повреждениям тем классическим путем, по которому развивались в предвоенные годы изыскания высокопрочной стали — подбором оптимального легирования. Однако они успеха не имели изменение стабильности аустенита в результате варьирования содержания легирующих компонентов в пределах, свойственных конструкционным сталям со средним содержанием углерода, давало лишь незначительное изменение относительного удлинения и ударной вязкости и практически оставляло без изменения чувствительность стали к повреждениям.  [c.197]

Оценку вклада в качество конструкционной стали последних лет следует завершить указанием на то, что современный этап развития материаловедения, как и вообще современная стадия научного прогресса, характеризуется особой эффективностью изысканий на стыках смежных областей знаний. Высокопрочную сталь следует ныне рассматривать не только как самостоятельный конструкционный материал, которым сталь являлась на протяжении столетий, но и как элемент нового класса комбинированных материалов, появившихся в середине нынешнего века, элементы которых в сочетании приобретают специфические качества.  [c.202]


По мере увеличения (до определенных пределов) скорости резания глубина наклепа возрастает. При высоких скоростях (200— 600 м/мин) возникает явление разупрочнения, которое уменьшает глубину наклепа. При обработке легированных и высокопрочных сталей, имеющих низкие пластические свойства, остаточные напряжения сжатия образуются при скоростях резания 400—600 м/мин. При обработке конструкционных сталей 20 и 45 остаточные напряжения сжатия возникают при скоростях резания 500—800 м/мин и отрицательных передних углах  [c.376]

При обработке высокопрочных сталей н сплавов возбуждение вибраций более значительно по сравнению с конструкционными сталями. Это вызвано не только большими силами резания, склонностью к большому упрочнению сталей или наличием твердых включений карбидов и интер-металлидов, но и своеобразным процессом затупления режущего инструмента.  [c.336]

Большое внимание уделяется новым и специальным жаропрочным, инструментальным, коррозионностойким, высокопрочным сталям (их составу, свойствам и применению), конструкционным титановым и алюминиевым сплавам, легированным бронзам, тугоплавким металлам и сплавам, стеклу и стеклокерамике.  [c.2]

Использование стекловолокна марки 8 (994)—НТ8 позволило создать конструкционный материал с высокой удельной прочностью. По данным фирмы, удельная прочность стеклопластика при содержании стекла 80% в 1,7—2 раза выше, чем у высокопрочной стали и в 1,2—1,4 раза выше, чем у титановых сплавов. Кроме того, преимуществом стеклопластика является возможность ориентировать при изготовлении стекловолокно в требуемом направлении, что является очень важным при несимметричном нагружении несферических конструкций.  [c.343]

Болты из конструкционных высокопрочных сталей обладают высокой чувствительностью к концентрации напряжений, поэтому все переходы сечения следует проектировать с максимально возможными радиусами закругления, особенно в месте перехода от гладкой части к головке.  [c.143]

Конструкционные стали и сплавы классифицируются по назначению на строительные (арматурные) и машиностроительные, а последние в свою очередь подразделяются на группы общего и специального назначения. С некоторой условностью эти стали также различают по прочности стали нормальной прочности 1000 МПа), стали повышенной прочности (6д< 1500 МПа) и высокопрочные стали (а > 1500 МПа).  [c.170]

Повышение конструкционной прочности технических систем и сооружений предполагает высокий уровень прочностных показателей не только отдельно взятого материала, но и всей совокупности материалов, используемых в изделии. Основными становятся характеристики материала в составе конструкции, обеспечивающие оптимальные показатели прочности и ресурса. Например, при создании напряженных конструкций и аппаратов химических производств, работающих в различных агрессивных средах при высоких рабочих давлениях с высоким тепломассообменом, применяются так называемые композитные конструкции, использующие сочетания высокопрочных сталей с другими металлическими материалами. При разработке подобных конструкций и их изготовлении ключевыми являются проблемы выбора материалов, учет различия их свойств и структуры, а также условия изготовления самой конструкции (режимы термической обработки (ТО), сварки и т.п.). Различия свойств используемых материалов в процессе изготовления при совместной ТО могут привести к возникновению термических напряжений, снижению конструкционной прочности, изменению размеров конструкций, а также структуры и коррозионной стойкости отдельных материалов.  [c.159]

Следует отметить, что мартенситно стареющие стали в состоянии высокой прочности по уровню ударной вязкости (K U) мало отличаются от других высокопрочных конструкционных сталей Однако температура порога хладно ломкости существенно ниже (на 70—80 °С), а значение ударной вязкости образцов с трещиной намного выше, чем у углеродсодержащих высокопрочных сталей КСТ= = 0,25—0,30 вместо 0,06—0,08 МДж/м )  [c.198]


Конструктивную прочность конструкционных сталей можно оценить по диаграмме конструктивной прочности, построенной в координатах предел текучести аод — вязкость разрушения Ki . На рис. 5.16 представлена обобщенная диаграмма конструктивной прочности конструкционных сталей различных классов и способов упрочнения. На диаграмме указаны области средне и высокоуглеродистых легированных сталей. Штриховой линией отмечено значение Оо 2 1 400 МПа, являющееся нижней границей для высокопрочных сталей. На диаграмме также указаны приблизительные области различных механизмов распространения трещины при испытаниях на Ki , построенные на основании фрактографических исследований.  [c.363]

Коррозионному растрескиванию особенно подвержены высокопрочные стали, нержавеющие стали и сплавы, титановые, алюминиевые и магниевые сплавы, т. е. самые современные конструкционные материалы. Анодное растворение металла под напряжением на локальных, экстремальных его участках, имеющее термодинамическую возможность протекать до или одновременно с водородным охрупчиванием, с точки зрения электрохимии имеет много общего с питтингом.  [c.228]

В качестве высокопрочных сталей можно применять любые конструкционные стали, подвергнутые закалке и низкому отпуску. При этом весьма желательно, чтобы сумма содержания хрома, марганца, кремния и никеля была не ниже 2,5%, а при легировании дополнительно молибденом — не ниже 1,5—2,0%.  [c.216]

У высокопрочных легированных конструкционных сталей при выплавке в открытых электропечах после термической обработки недоста-  [c.287]

В качестве С. в. применяются нек-рые высокопрочные стали (см. Сталь конструкционная высокопрочная).  [c.197]

В настоящее время сварку широко применяют в жилищном и промышленном строительстве, мостостроении, строительстве газо- и нефтепроводов и во многих отраслях техники. Изделия <13 стали, кроме движущихся деталей машин, как правило, свариваются. Поэтому свариваемость стали — одно из главных свойств. Выше мы рассмотрели конструкционные (цементуемые и улучшаемые) высокопрочные стали. Изделия из них обычно сваркой не изготавливают. Но строительные сорта стали почти обязательно свариваются. Поэтому, прежде чем перейти к строительным сталям, рассмотрим в общих чертах, что олре-деляет способность стали к сварке.  [c.397]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

Результаты испытания в производственных условиях обследований действующих агрегатов на разных предприятиях дают основание утверждать, что при налаженном технологическом процессе для нагнетателя сернокислотного производства могут быть использованы среднелегированные стали для лопаток (типа 13Н5А) и обычные конструкционные марки для прочих деталей, удовлетворяющих по прочностным и пластическим свойствам. При применении новых высокопрочных сталей обязателен контроль на склонность в указанной среде к коррозионному растрескиванию в производственных условиях.  [c.44]

Бурное развитие исследований качества стали имело место в послевоенные годы. Оно шло несколькими путями. На первой стадии развивались традиции предвоенных лет и велась дальнейшая разработка новых композиций конструкционной стали. Постепенно повышалось содержание углерода — главного носителя упрочняющей фазы в сталях. Одновременно подбиралось легирование с тем, чтобы снижение пластичности и сопротивления отрыву в связи с изменением содержания углерода не зашло слишком далеко. Так были созданы марки высокопрочной стали для авиации ЗОХГСНА, ВЛ1, ВЛ1-Д с пределом прочности Ов = 160 — 180 кПмм и ЭИ643сав = 190 — 210 кПмм . Одновременно стала ясна невозможность обеспечить дальнейшее повышение прочности путем легирования.  [c.195]

Они оказываются более универсальными, чем классические конструкционные стали. Из отечественных марок мартенситно стареющих сталей, сочетающих высокую прочность и исключительную надежность, можно назвать сталь марки BKG-210. Эта сталь, легированная никелем, кобальтом, молибденом при содержании углерода не больше 0,03%, имеет Ов 210 кПмм и в то же время не чувствительна к трещинам и другим механическим повреждениям. Например, при трещине длиной до 2,5 мм ее предел прочности сохраняется практически неизменным (90%). Разработка этой марки стали — крупнейшее достижение металловедения в области конструкционных материалов за последние годы. На ее основе осуществляются все дальнейшие изыскания в области высокопрочных сталей. Однако высокая стоимость и дефицитность легирующих компонентов налагают серьезные ограничения на применение мартенситно стареющих сталей. Ведутся поиски возможностей сокращения содержания кобальта и молибдена и замены их другими компонентами, способными дать столь же высокодисперсные и равномерно распределенные выделения упрочняющей интер-металлидной фазы, какие образуются в железокобальтоникелевом растворе.  [c.201]


На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

Современный этап разбития техники характеризуется интенсификацией производственных процессов, ужесточением эксплуатационных условий, увеличением единичных мощностей машин и оборудования, что обусловило разработку и применение высокопрочных конструкционных материалов. Вместе с тем, высокопрочные стали и сплавы, как правило, более склонны к коррозионно-механическому разрушению, в частности, коррозионной усталости, чем менее прочные, но термодинамически более стабильные металлы. Поэтому одной из важных задач борбы с коррозией является решение металлургической стороны проблемы, т.е. установление влияния природы, состава, строения металлов на их коррозионно-механическое разрушение с целью получения данных для оптимизации технологии производства конструкционных материалов.  [c.3]

Скорость резания Шероховатость обработанной поверхности повышается в пределах одного-двух классов, когда обработка ведется на скоростях резания, способствующих наростообразованню. При обработке на высоких скоростях резания (150—300 м1мин) шероховатость обработанной поверхности снижается в пределах одного-двух классов По мере увеличения (до определенных пределов) скорости резания глубина наклепа возрастает. При высоких скоростях (200—600 м мин) возникает явление разупрочнения, которое уменьшает глубину наклепа. При обработке легированных и высокопрочных сталей, имеющих низкие пластические свойства, остаточные напряжения сжатия образуются при скоростях резания порядка 400—600 м/мин. При обработке конструкционных сталей типа марок 20 и 45 остаточные напряжения сжатия возникают при скоростях резания порядка 500—800 м мин при отрицательных передних углах С увеличением скорости резания и уменьшением шероховатости до оптимальной износостойкость и коррозионная стойкость увеличиваются. Усталостная прочность повышается с увеличением степени и глубины наклепа и повышением остаточных напряжений сжатия  [c.397]

Материалы на основе углепластиков впервые начали применять в самолете F-14, а для самолета F-18 они уже завоевали себе место в качестве одного из наиболее эффективных конструкционных материалов. Для этого пришлось пересмотреть сложившееся ранее мнение, что алюминий, титан, высокопрочная сталь и другие металлические материалы являются основными конструкционными материалами для изготовления деталей самолетов. Благодаря уменьшению массы сейчас удается создать новые типы более совершенных истребителей. В самолетеY AV-8В около 17% массы приходится на обшивку несущих крыльев, закрылки и вспомогательные крылья, а в новой модификации AV-8B Харриер (рис. 6.8, а) из углепластиков изготовлена также панель фюзеляжа и общая масса деталей самолета из углепластиков составляет около 26%. Конструкция основного крыла самолета AV-8B Харриер показана на рис. 6.8, б. Лонжерон и ребро такого крыла имеют двутавровое сечение, а стенка лонжерона - синусоидальную форму это типичный пример конструкции крыла, изготовленного из композиционных материалов Такая же конструкция использована и в горизонтальном хвостовом one рении бомбардировщика В-1.  [c.213]

Получение сталей высокой прочности неизбежно ведет к понижению характеристик пластичности и, прежде всего, сопротивления хрупкому разрушению Поэтому надежность стали в конструкции (изделии) может быть охарактеризована конструктивной прочностью — комплексом механических свойств, находящихся в корреляции с эксплуатационными условиями работы изделий Для большинства конструкционных высокопрочных сталей такими параметрами конструктивной прочности являются предел текучести ((Г02) и параметр вязкости разрушения (трещиноустойчи-вости)—/ i  [c.218]

Если для конструкционных сталей с временным сопротивлением до 1000— 1250 МПа обычно наблюдается приблизительно линен-ная зависимость между ограниченным пределом усталости и временным сопро тивлением и соотношение между ними равно 50% то для высокопрочных сталей с временным сопротивлением более 1300— 1500 МПа прирост предела усталости с ростом Bpenei ного сопротивления непре  [c.229]

Потак Я М Высокопрочные стали М Металлургия 1972 208 с Проблемы разработки конструкционных сплавов Пер с англ М Металлургия 1980 336 с  [c.403]

На основе проведенного исследования ВМС США приняли решение продолжить разработку этих конструкций на базе углеволокнистых композитов. Фирма Макдоннел Дуглас астроно-тикс изготовила балку из композита для испытаний в Центре исследований и развития военно-морских судов Дейвида Тэйлора. Такие балки представляют собой типичный конструкционный элемент подводного крыла. Они будут испытаны в качестве консольных балок в контакте с морской водой в условиях циклического нагружения, подобных тем, которые существуют при эксплуатации. Результаты будут сравнены с результатами аналогичных испытаний для балок, изготовленных из высокопрочной стали и титана.  [c.533]

По данным М. И. Гольдштейна с сотрудниками, для большинства конструкционных высокопрочных сталей параметрами конструктивной прочности являются предел текучести (оод) и параметр вязкости разрушения (трещиноустойчи-вости) — Ki -  [c.363]

Высокопрочные стали при необходимой прочности должны обладать комплексом свойств, характеризующих конструкционную прочность или прочность металла в констр)тсции.  [c.363]

Эти соотношения для произвольных оболочек, связывающие деформации и перемещения, справедливы для любых практйче-еких задач, включая задачи для тонких оболочек из обычных конструкционных материалов, работающих в упругой области. Можно отметить, что в примере Б. Элмроза, на котором основывается сделанный вывод, предполагалось, что материалы имеют максимальное значение относительной деформации порядка от 0,001 (малоуглеродистая сталь), до 0,01 (высокопрочные стали, жесткие пластики и т. п.). Выражения (6.8) не ограничены такими малыми деформациями, и поэтому они могут быть полезны при исследовании резиноподобных материалов или обычных материалов при пластическом течении, где деформации могут иметь величину порядка единицы.  [c.424]


Кроме высокопрочных среднелегированных конструкционных стал за последние годы довольно пшроко применяют высокопрочные нержавеющие стали, имеющие при той же прочности значительно ббльшую вязкость и ряд важных технологических преимуществ. Кроме того, весьма перспективны высокопрочные Мартенситностареющие стали.  [c.215]

Влияние температуры на Кю наиболее заметно проявляется в относительно низкопрочных конструкционных сталях. Цветные сплавы и высокопрочные стали, как например мартенситно-ста-реющие, обнаруживают сравнительно малое изменение вязкости с температурой вплоть до 100° С. Аналогичным образом низкопроч-  [c.137]

При изучении общих закономерностей процесса деформации, а также при исследовании связи между показателями прочности материала при растяжении и др. видах напряженного состояния часто пользуются истинными П. н. (см. Напряжение истинное). Истинный П. п. при растяжении характеризует отношение макс. нагрузки к фактич. площади поперечного сечения образца Р/, в момент достижения jP aK вычисляется по формуле 6 = о /(1—где г )(,— равномерное поперечное сужение образца. У конструкционных сталей средней прочности, алюминиевых и магниевых сплавов Sj, превышает Of, обычно на 8—12%, у высокопрочной стали— на 2—4%, у пластичных латуней и нек-рых марок нержавеющей стали — на 20—30%. Истинный П. п. при сжатни5 (, определяется путем деления разрушающей нагрузки на площадь поперечного сечения образца в момент разрушения. S f, всегда ниже сг и тем больше эта разница, чем пластичнее материал. Истинные П. п. при изгибе образца прямоугольного сечения шириной Ь и высотой h и кручении круглого стержня радиусом г вычисляются  [c.47]


Смотреть страницы где упоминается термин Высокопрочная сталь конструкционная : [c.333]    [c.600]    [c.368]    [c.344]    [c.590]    [c.107]    [c.99]    [c.201]    [c.363]    [c.146]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.204 ]



ПОИСК



В95 высокопрочные

Высокопрочная сталь конструкционная нержавеющая

Конструкционная сталь азотируемая высокопрочная

Конструкционные высокопрочные

СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сварка конструкционных среднеуглеродистых, низколегированных повышенной прочности и высокопрочных сталей (д-р техн. наук М. В. Поплавко-Михайлов, инж. К. Г. Никифорова)

Сталь высокопрочная

Сталь конструкционная

Сталя высокопрочные



© 2025 Mash-xxl.info Реклама на сайте