Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кривые течения (напряжение — скорость

Эти данные фиксируются, и по ним путем соответствующего пересчета определяются значения относительных скоростей сдвига, т. е. градиентов скорости, и касательных напряжений, "необходимые для построения кривых течения.  [c.286]

Процесс получения на экране кривых, характеризующих изменения напряжений, подаваемых на пластины трубки, называется разверткой. Для того чтобы была возможность наблюдать на экране непосредственно кривую исследуемого напряжения, пользуются так называемой непрерывной (линейной) разверткой по времени. С этой целью на пластины горизонтального отклонения подают напряжение, имеющее пилообразную кривую (рис. 128). В течение одного периода Т это напряжение сначала равномерно возрастает или убывает до определенной величины, а затем очень быстро возвращается к начальному значению. Светящееся пятно при этом перемещается на экране по горизонтали с определенной постоянной скоростью и  [c.184]


Капиллярная вискозиметрия применяется для построения кривых течения — зависимостей сдвигового напряжения т от скорости сдвиговой деформации у в стационарном изотермическом потоке — путем обработки результатов измерений интегральных характеристик потоков в круглых каналах малого диаметра. Обработка данных производится как в предположении справедливости степенного реологического уравнения  [c.84]

По результатам расчета видно, что достигаемые значения скорости сдвиговой деформации вблизи стенки капилляра оказались значительно выше, чем найденные при аппроксимации кривой течения степенным уравнением. Это характерно для резиновых смесей, обладающих высокой степенью аномалии вязкости и приближающихся по свойствам к пластичным средам. В этом случае сдвиговые деформации концентрируются вблизи границ потока и внешне проявляются как скольжение по деформирующим поверхностям в области предельных напряжений сдвига. Для таких смесей правильное построение кривой течения устраняет значительное завышение рассчитываемых нагрузок при проектировании процессов с большой интенсивностью воздействия на материал.  [c.94]

При анализе кривых течения оценить интервал охваченных экспериментом скоростей сдвиговой деформации с учетом аномалии вязкости материала, а также сравнить максимальные напряжения сдвига. Принять во внимание также данные о смеси, рассмотренной в примере 2.2.1.  [c.113]

Вязкое поведение сверхпластичных материалов может быть описано реологической моделью упруговязкопластической среды [35]. Для описания течения этих материалов в неограниченно широком интервале скоростей деформации была принята концепция, согласно которой напряжение течения при скоростях деформации, стремящихся к нулю, асимптотически приближается к значению порогового напряжения (1-й участок кривой сверхпластичности), а при скоростях деформации, стремящихся к бесконечности, асимптотически приближается к значению предела текучести (3-й участок кривой сверхпластичности). Между 1-м и 3-м участками находится 2-й участок, соответствующий собственно сверхпластической деформации. При этом зависимость скорости деформации от напряжения выражается следующим уравнением  [c.412]

Коэффициент вязкости ri у обычных жидкостей уменьшается с увеличением температуры и повышается при высоких гидростатических давлениях. Представляемая графически зависимость между градиентом скорости и напряжением сдвига (кривая течения) для ньютоновских жидкостей — прямая ОА, проходящая через начало координат (рис. 7).  [c.14]


Значительное повышение скорости деформации приводит к увеличению развивающейся в материале упругой деформации. Так как сопротивление вязкому течению в этих условиях возрастает и релаксация не успевает развиваться, во всяком случае при невысоких напряжениях, то доля деформации, обусловленная течением, уменьшается и восходящая ветвь на значительном протяжении может оказаться прямолинейной (когда упругие или высокоэластические деформации подчиняются закону Гука). Так как необратимые деформации непрерывно накапливаются, то по крайней мере, в верхней части восходящая ветвь приобретает кривизну. Так выглядят кривые т () при небольших скоростях регистрации роста моментов (напряжений) во времени.  [c.65]

Рис. 63. Сопоставление полной кривой течения с зависимостью между скоростью деформации и разностью нормальных напряжений для упругих жидкостей Рис. 63. Сопоставление полной <a href="/info/67537">кривой течения</a> с <a href="/info/583616">зависимостью между</a> <a href="/info/420">скоростью деформации</a> и <a href="/info/549">разностью нормальных напряжений</a> для упругих жидкостей
Заметим, что в приборе данного типа задача об определении кривой течения D = / (т) для неньютоновских жидкостей по зависимости суммарного момента от угловой скорости М (со) является неопределенной. Действительно, в соответствии с формулой (39), которую можно написать с учетом указанного правила знаков для областей 1 и 2 для определения зависимости D = f (т), необходимо знать касательные напряжения т,- (или моменты УИ,) в зависимости от со для каждой из областей J и 2. Если такая информация имеется, то определение кривой течения в этом случае ничем не отличается от определения кривой течения на коаксиально-цилиндрических вискозиметрах. Отметим еще, что приведенные здесь результаты для вискозиметров колокольного типа не зависят от того, какой из цилиндров вращается, а какой неподвижен.  [c.155]

Кривой течения называют зависимость между касательными напряжениями и градиентом скорости в плоском одномерном, ламинарном, изотермическом потоке, когда скорость W меняется только по нормали к направлению течения. У жидкостей, подчиняющихся закону трения Ньютона, в рассматриваемых условиях  [c.597]

Первичные кривые ползучести для серии образцов являются основой для построения диаграмм зависимости или между напряжением и удлинением в течение заданного времени испытания, или между напряжением и скоростью деформации на стадии установившейся ползучести, или между напряжением и временем достижения удлинения заданной величины.  [c.354]

Исследование напряженности поля позволяет объяснить установленную нами ранее закономерность в распределении питтингов по размерам [32 38, с. 18 43, 44]. Рассмотренные выше кривые, указывающие на различную степень проникновения коррозии в глубь металла (см. рис. 166), могли быть в принципе истолкованы двояко. Во-первых, можно было предположить, что все питтинги действуют в течение всего времени, но растворение металла в них происходит с различными скоростями. Во-вторых, такое распределение может иметь место, когда отдельные питтинги перестают постепенно функционировать. Кривые изменения напряженности поля, приведенные выше, позволяют однозначно утверждать, что при питтинговой коррозии реализуется преимущественно второй ме-  [c.344]

Различия в значении абсолютной величины коэффициента т, измеренного разными способами, обусловлены рядом факторов, в том числе исходным структурным состоянием материала, его изменением в процессе растяжения и степенью деформации, при которых определяют т. Большое значение, как показывают результаты работы [22], имеет форма кривых напряжение — деформация в условиях СП течения. Дело в том, что на измеряемую величину т существенное влияние оказывает величина и знак коэффициента деформационного упрочнения я, который зависит от формы истинных кривых деформаций. Как показали исследования, при определении коэффициента т необходимо анализировать истинные кривые растяжения при разных скоростях деформации, измерения производить лишь в точках, где коэффициент п имеет один знак для обеих сравниваемых скоростей деформации. Учет этого обстоятельства требует детального изучения истинных кривых растяжения при разных скоростях деформации. Однако при постановке всего комплекса исследований теряется практический смысл определения коэффициента т как параметра, позволяющего упростить оценку СП поведения материала.  [c.13]


На рис. 74 приведены кривые зависимости о—е, характеризующие напряжение течения сплава без предварительной деформации и после предварительной деформации на 25 %. Как видно, кривые растяжения существенно различаются. После предварительной деформации с высокой скоростью напряжения течения резко уменьшаются. Однако при дальнейшем увеличении степени деформации имеется тенденция к сближению кривых. Детальное объяснение изменения напряжений течения после переключения скоростей дано в разд. 2. Эксперимент, несмотря на специфику изменения фазового состава титановых сплавов, указывает на тесную связь между двумя основными механизмами СП течения ЗГП и ВДС.  [c.191]

Когда напряжение на индукторе отличается от напряжения, заданного программой, усилитель регуляторов 3 и 4 выдает в обмотку возбуждения 5 генератора импульс, повышающий или понижающий напряжение на зажимах индуктора в соответствии с программой. Изменяя напряжение на индукторе в течение нагрева, можно в широких пределах изменять форму термической кривой (рис. 97) и скорость нагрева. Кривая получена ступенчатым изменением напряжения на зажимах индуктора и мощности, отбираемой от генератора при нагреве зубчатого колеса. Регулирование производилось четырьмя ступенями.  [c.159]

Как показано на рис. 9.6, переход от более крутой кривой течения (большая скорость деформации) к менее крутой (меньшая скорость) может быть осуществлен при постоянном напряжении и при постоянной деформации путем релаксации. Явление релаксации у металлов сильнее проявляется при высоких температурах. Физически правильнее изучать последействие при постоянном истинном напряжении, однако при малых деформациях это несущественно.  [c.318]

В процессе опытов частоту вращения меняют (в современных конструкциях вискозиметров — в весьма широких пределах), одновременно меняются значения крутящего момента. Полученные данные фиксируют и по ним путем пересчета определяют относительные скорости сдвига, т. е. градиенты скорости, и касательные напряжения, необходимые для построения кривых течения.  [c.240]

В том случае, когда значения kf и ц> наносятся на двойную логарифмическую координатную сетку, кривая течения представляет собой прямую линию. Кривая течения— сложная характеристика, которая, помимо материала, зависит также от напряженного состояния, температуры, деформации и скорости деформирования. По кривой течения рассчитываются сила, работа и мощность при пластической деформации и делается заключение об ожидаемой после деформации прочности материала.  [c.61]

Рис. 16.37. Кривые релаксации при различных скоростях сопротивления течению % = да д1 при одном и том же начальном напряжении 01. Рис. 16.37. <a href="/info/46152">Кривые релаксации</a> при различных скоростях сопротивления течению % = да д1 при одном и том же начальном напряжении 01.
На рис. 7.33 представлены зависимости функций течения т , р ж Ае (кривые 1—4) от скорости вдува Р для = О и го = 1 на передней кромке пластины. При приближении скорости вдува к предельному значению Р = 1,1 как коэффициент напряжения трения в продольном направлении т , так и коэффициент напряжения трения в поперечном направлении одновременно стремятся к нулю. Расчеты так-  [c.351]

Для расчета одного технологического режима переработки резиновой смеси в валковом зазоре необходимо подготовить исходную информацию в соответствии со следующими идентификаторами программы N , NR — задаваемое число циклов интегрирования соответственно в зоне клин — валок и в зоне валок — валок рабочего зазора по угловой координате поворота валка (в случае отсутствия клина — отражателя принимается N = 0) NY — число циклов интегрирования по координате у поперечного сечения зазора, принимаемое для построения расходной характеристики а у) с регулярным шагом по у, определяемым формулой (4.30) N—число равномерных шагов по а, определяющее число -j- I линий тока в поступательном потоке материала L — число пропусков циклов интегрирования по продольной координате зазора при выводе на печать информации об эпюре удельного давления и координатах линий тока в отдельных поперечных сечениях, а также о ряде других текущих параметров процесса R — радиус валка НО — минимальный зазор между валками Hq VI, V2 — линейные скорости V, V2 валков MU — коэффициент консистенции материала ы при заданной температуре переработки М — индекс течения материала т KMIN — нижняя граница интервала поиска относительного калибра HjHo слоя материала на выходе из рабочего зазора КМАХ — верхняя граница этого интервала GMAX — высокое в пределах экспериментальной кривой течения материала значение скорости сдвиговой деформации YФ. задаваемое с целью выделения программным путем малого по сравнению с предельным сдвигового напряжения, определяющего выбор равномерного или неравномерного шага интегрирования по у путем сравнения с граничными касательными напряжениями FIH, FI — подготавливаемые только для расчета процесса с использованием клинового устройства значения угловых координат сечений входа материала в зону клин — валок и зону валок — валок соответственно, взятые по модулю NH — число точек графика Я(ф) для задания геометрии зазора клин — валок, подготавливаемое также только при использовании клинового устройства Н2 — толщина слоя материала Н2 в сечении загрузки в рабочий зазор, задаваемая в случае отсутствия клинового устройства MFI, MH[1 NH] —одномерные массивы соответствующих координат фг и Hi зазора клин — валок, подготавливаемые в случае применения клинового устройства.  [c.228]


Для непрерывного изменения скорости вращения чашки пискозпметра используется гидропередача. Таким образом, на экране ЭРУ-1 могут быть зарегистрированы отдельные участки кривых течения в координатах скорость — напряжение сдвига. В этом случае на вход X усилителя ЭРУ-1 подается напряжение с реохорда 4 ком, а на вход У усилителя — выходное напряжение с усили-теля-удвоителя 4. Для нагрева исследуемого материала используется электронагревательное y Tpoii TBO 19. Температура поддерживается потенциометром 21 типа ЭПВ2-11 Т с подсоединенной к нему термопарой. Термопары, измеряющие температуру чашки и конуса, подключены через переключатель к потенциометру 20 типа ЭПВ-01. При необходимости записи температуры вместо ЭПВ-01  [c.228]

Основной характеристикой неньютоновских жидкостей являются так называемые кривые течения, или реологические кривые (реограммы), изображающие графически зависимость между градиентом скорости течения жидкости (или, что то же самое,—скоростью сдвига) и возникающим в ней касательным напряжением т.  [c.285]

Бшп получены кривые течения для этих двух составов, г.е. зависимости градиента скорости сдвига от напряжения сдвига на стенке. На рис.1 представлены кривые течения для первого состава в логарифмических координатах при различных длинах капил- ляра. Как видно из рисунка, кривые имеют линейный характер, поэтому для количественвого описания этих зависимостей можно воспользоваться функциональной зависимостью  [c.70]

Зависимость касательного напряжения от скорости сдвига назьшает-ся кривой течения.  [c.204]

Если процесс идет при постоянной температуре, то Т1 = onst. Тогда, откладывая на оси абсцисс значения напряжений а на оси ординат скорости сдвига dvjdx , получим прямую линию, тангенс угла наклона которой равен коэффициенту вязкости. Следовательно, если на опыте реализовать условия чистого сдвига и измерить скорости сдвига и соответствующие им напряжения, то по отмеченной выше методике можно определить коэффициент вязкости. Приборы такого типа называются вискозиметрами, а уравнения тапа (1-10-2) в реологии называются кривыми течения.  [c.79]

Рациональность размещения точек вдоль кривых Vx(y) и а( ), построенных для сечений с зоной циркуляции и без нее, иллюстрируется примерами (рис. 4.2). Формула (4.31) нецелесообразна лишь при условии малой разности граничных касательных напряжений, например при Т2 — xi < 0,01 Тщах, где Ттах — сдвиговое напряжение при высокой фиксированной скорости сдвига в пределах экспериментально построенной кривой течения. В этом случае распределение линейных скоростей потока в данном поперечном  [c.138]

На рис. 16.8 представлена карта с нанесенными на ней контурами постоянной эффективности рассеяния для порошкового (150 меш) сплава Rend 95, подвергнутого прессованию [27]. Необходимые данные были получены посредством испытаний сжатием в диапазоне 1038-1135 °С при скоростях деформации от 10 до 10 с . По деформационным кривым определяли чувствительность к скорости деформации и эффективность рассеяния энергии при каждой из испытанных температур и при каждой скорости деформирования, соответствующей заданной степени деформации. Карта рис.16.8 построена путем измерения напряжений течения при сжатии до деформации, равной 0,5.  [c.213]

На втором этапе Гамильтон проанализировал кривые зависимости напряжения пластического течения от скорости деформации для матрицы Ti — 6% А1 — 4% V, чтобы определить граничные условия горячего прессования, не вызывающие образования чрезмерного реакционного слоя (500 А). Параметры горячего прессования оптимизировали но этому пределу, однако никаких подробностей о них не приводится. С использованием волокон борсика со средней прочностью 435 ООО фунт/кв. дюйм (305,8 кгс/мм ) и стандартным отклонением 55 ООО фунт/кв. дюйм (38,7 кгс/мм ) получены композиционные материалы хорошего качества, у которых значения разрушающей деформации превышали 6000 мкдюйм/дюйм (0,6%). Модули упругости композиционных материалов с 21—27 об. % волокна также отвечали ожидаемым значениям и находились в интервале 23—28-10 фунт/кв. дюйм (16 171—19 686 кгс/мм2).  [c.293]

Если при построении кривых течения масштабы логарифмических шкал D и т одинаковы, то ньютоновским режимам течения отвечают прямые с угловыми коэффициентами, равными единице. Удобство изображения результатов опытов в координатах Ig D и Ig т определяется тем, что на этих графиках может быть, кроме того, представлена зависимость т (7) так, как это показано пунктирной кривой на рис. 55, в. При этом верхняя часть кривой т,1 (7) изображена предположительно, поскольку в литературе для этого нет данных. Область, заключенная между пунктирной и сплошной кривыми, описывает переходные режимы деформирования, при которых совершается изменение структуры в материале при постоянной скорости деформации или при постоянном напряжении сдвига (показано стрелками). Рассматриваемые здесь переходные режимы в методе Q = onst соответствуют нисходящим ветвям кривых т (7), в методе М = onst — участкам S-образных кривых 7 (/) от точки перегиба до выхода на установившийся режим течения.  [c.119]

Из рассмотрения рис. 60 виден ряд существенных различий между неньютоновскими жидкостями и пластичными дисперсными системами. Во-первых, у пластичных дисперсных систем нелинейность зависимости у (т) наблюдается при таких скоростях деформаций (y > унн) и напряжениях сдвига (т > т ), при которых не проявляется разрушение структуры материалов. Во-вторых, у этих систем разрушение структуры может быть выражено столь резко и происходит так интенсивно, что в широком интервале скоростей деформаций максимальное напряжение сдвига не зависит от величины у или слабо повышается с ее увеличением. Эта особенность прочностных свойств пластичных дисперсных систем обусловлена прежде всего хрупкостью их структурного каркаса. В-третьих, отвечающее каждому определенному значению у предельное разрушение структуры может так усиливаться с увеличением у, что напряжения сдвига на установившихся режимах течения не только отстают от увеличения у, как-то наблюдается при аномалии вязкости, но значительно снижаются при возрастании у. Это явление сверханомалии, впервые изученное в работах Г. В. Виноградова, В. В. Синицына и В. П. Павлова, иллюстрируется на рис. 60 ветвью АС кривой A DEFG. В-четвертых, на установившихся режимах течения при низких скоростях деформаций сопротивление вязкого течения дисперсионной среды и перемещения относительно нее дисперсной фазы могут не зависеть от скорости деформации (участок D кривой A DEFG). С увеличе-  [c.128]

Вискозиметр Е. Хелмеса [39]. о прибор, на котором измерения вязкости производятся как при постоянной, так и непрерывном изменении скорости вран1ения наружного цилиндра. Он предназначен для исследования жидкостей и пластичных материалов. Вискозиметр снабжен устройствами для автоматической записи кривой течения (за время от 2 до Ъмин). Пределы измерения вязкости от lOr до 2-10 н-сек-м напряжений сдвига от О до 5 н от О до 5-102 скоростей  [c.162]

Автоматический ротационный вискозиметр Р. Вельтман и П. Кунса [57]. Прибор допускает испытание материалов при Q = onst и по заданной программе автоматического изменения Й за определенные отрезки времени. Кривые течения материала записываются на двухкоординатном регистрирующем устройстве. На нем же воспроизводится при желании запись зависимости напряжений сдвига от времени. Автоматическое управление прибором позволяет записывать кривую течения за 15 сек при изменении скорости деформации от О до 4-10 сек. За столь малые отрезки времени испытания тепловые эффекты не успевают проявиться в такой мере, чтобы оказать существенное влияние на результаты измерений. Автоматический вискозиметр применялся для испытаний смазочных масел и консистентных смазок. Наружный цилиндр приводится во вращение со скоростью от О до 400 или от О до 1,6-10 об мин. Крутящий момент передается на внутренний цилиндр, связанный с измерителем тензометрического типа. Пределы измерения вязкости от 5-10" до 2-10 н-сек-м скоростей деформации до 4-10 сек напряжений сдвига от 5 до 2,5-10 Я 1 — Oi75 0,535 Янз = 1Л  [c.179]


Вискозиметр Р. Мак-Киннеля [8, 9]. Вискозиметр выпускается фирмой Ферранти-Ширли (Англия). Это прибор высокого класса исполнения. Вращается конус, связанный с измерителем моментов торсионного типа (спиральная пружина) и с реостатным (омическим) датчиком. Диск неподвижен. Отличительной особенностью прибора является малый угол между конусом и диском (порядка 0,3°), что требует для испытания всего около 0,1 см исследуемого материала и обеспечивает высокую однородность поля напряжений сдвига и температур (от комнатных до 200°). В приборе предусмотрено автоматическое устройство для записи кривых течения. Пределы измерения вязкости отО,1 до 10 н-сек-скоростей деформации от 0,1 до 1-10 сек и напряжений сдвига от О до 5,68-10 н-ж-2.  [c.222]

Скоростная зависимость механических свойств СП сплавов также резко отличается от обычной деформации (рис. 1). Для СПД типична сильная зависимость напряжения течения от скорости деформации, которая в логарифмических MaQ ira6ax имеет сигмоидальный вид (рис. 1, а). Такая сигмоидальная форма кривой а—е позволяет выделить на ней три области. При низких скоростях деформации наблюдается относительно слабая зависимость о от е (рис. l,fl, область I) и низкие значения m и б (рис. 1,6, в). С повышением е зависимость напряжения течения от скорости деформации становится более резкой, величины m и б возрастают и происходит переход к области П, где эффект СП достигает максимума. Интервал скоростей деформации, соответствующий области И, несколько отличается у разных сплавов, но обычно находится в диапазоне —10 2с . Дальнейшее увеличение г вызывает снижение m и б. В области П1 при высоких е относительное удлинение, напряжение течения а и параметр т приближаются к значениям, характерным для обычных пластичных материалов. Такой вид кривой Ig а—Ig е, часто называемой кривой СП, на которой четко выделя> ются три области, является типичным для различных материалов в СП состоянии. Следует отметить, что в экспериментальных работах [8—11] обнаружено не уменьшение, а увеличение скоростной чувствительности напряжения течения при малых скоростях дефор-  [c.11]

После снадия приложенного напряжения о скорость деформации в течение некоторого времени была отрицательной (протекала обратная деформация), но затем начиналась деформация в прямом направлении, и скорость деформации за короткое время возрастала до нуля и становилась положительной. Зависимость обратной деформации от времени измеренного с момента снятия приложенного напряжения, представлена на рис. 8.4,а. Точки на кривых обозначают достижение нулевой скорости деформации. Для оценки величин обратных деформаций, соответствующих каждому приложенному на-  [c.94]

Один из цилиндров вискозиметра приводится во вращение н вызывает (благодаря вязкости) относительное двяженне (сдвиг) жидкости, находяще кя в кольцевом межцнлиндри.ческом пространстве. Вследствие этого на поверхностях обоих цилиндров, так же как и в жидкости (между отдельными слоями ее)., возникают касательные напряжения, приводящие к появлению крутящего момента,, воспринимаемого вторым цилиндром. При проведении опытов измеряют угловую скорость вращения й значения крутящего момента. По полученным, данным определяют значения относительных скоростей сдвига [см. формулу (8)] и касательных нанряжепий [см. формулу (7)], необходимые для построения кривых течения.  [c.210]

Для характеристики реологических свойств нейьюто-новских жидкостей часто вводят понятие эффективной кажущейся вязкости, которая представляет собой некоторую условную характеристику их, используемую при выполнении гидравлических расчетов по обычным формулам гидравлики ньютоновских жидкостей. Эта вязкость даже для определенной жидкости не является постоянной величиной. Ее значения зависят от градиента скорости V и напряжения сдвига х и определяются на реограмме углами р наклона прямых, соединяющих начало координат с точками кривой течения (рис. 111) rlэ= tg (т/т).  [c.211]

Пусть материал обладает свойствами, схематически изображенными на рис. 1.1. При напряжениях т, , меньших кристаллографического предела текучести То, пластическая деформация не возникает. При больших напряжениях начинается пластическое течение вдоль кривой Лб с коэффициентом деформационного упрочнения А К Если в момент, отвечающий точке В на кривой АВ, производится разгрузка, скорость деформации Рз, падчет до нуля и отсутствует до тех пор, пока Т31 лежит в пределах от Т31 = — О С до тз) = О В.  [c.17]

Таким образом, как следует из уравнения (16.109), в случае среды, обладающей свойством обратной ползучести, при мгновенном нагружении до напряжения а = (Тг скорость убывания напряжения в начальный момент йа1й1)1=о будет значительно большей, чем в случае среды, не дающей деформаций обратной ползучести е ". Если же процессу релаксации предшествует медленное возрастание напряжения а, то абсолютное значение ( /а/с /) =о уменьшится на величину, зависящую от значения [и" )1=о в начальный момент релаксации. С течением времени 1 кривые релаксации напряжения для сложной среды и для среды, не проявляющей свойства обратной ползучести, могут пересечься, так как в первой среде релаксация происходит  [c.671]


Смотреть страницы где упоминается термин Кривые течения (напряжение — скорость : [c.287]    [c.419]    [c.127]    [c.132]    [c.134]    [c.163]    [c.163]    [c.180]    [c.474]   
Ротационные приборы Измерение вязкости и физико-механических характеристик материалов (1968) -- [ c.0 ]



ПОИСК



Кривая скоростей

Напряжение течения

Скорость течения



© 2025 Mash-xxl.info Реклама на сайте