Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изотропная составляющая тензора напряжений

При этом изотропная составляющая тензора напряжений описывает всестороннее сжатие под действием гидростатического  [c.11]

Изотропная составляющая тензора напряжений 11  [c.268]

Будем предполагать, что механические свойства твердых тел носят изотропный характер, т. е. девиаторные составляющие тензоров напряжений и деформаций равны нулю, и фазовые превращения отсутствуют. Изменение плотности, следовательно, является результатом всестороннего сжатия вещества, и его упругие свойства характеризуются одной величиной — сжимаемостью.  [c.108]


Полагается, что в пространстве составляющих тензора напряжений существует поверхность нагружения, разделяющая области упругого и упругопластического состояний. Поверхность нагружения изотропно расширяется или сужается и смещается в процессе нагружения. Уравнение поверхности нагружения принимается в следующем виде  [c.32]

Полагается, что в пространстве составляющих тензора напряжений существует поверхность нагружения, разделяющая области упругого и упругопластического состояний. Поверхность нагружения изотропно расширяется или сужается, смещается и изменяет форму в процессе нагружения. Начальная поверхность нагружения может иметь форму, отличную от поверхности Мизеса. Уравнение поверхности нагружения принимается в следующем виде  [c.54]

Что касается вида функции Ф, обычное предположение состоит в том, что она может быть представлена в виде Ф = Ф (5), где s — однородная функция первой степени от Оц. Условия отсутствия объемной ползучести приводит к тому, что S не должно зависеть от гидростатической составляющей тензора напряжений. Для изотропных материалов обычно принимают либо S = (Jo, где (То — интенсивность напряжений, либо s = Oi — (Т3, где (Jl, О з — соответственно наибольшее и наименьшее главные напряжения. Уравнения ползучести Т Я) переписываются теперь следующим образом  [c.125]

Для решения задач прикладной геомеханики используются физические уравнения теории упругости (линейной и нелинейной),, пластично-вязких течений и др. Кратко остановимся иа основных уравнениях состояния, связывающих напряжения и деформации-Для описания поведения изотропного однородного упругого тела необходимо знать модуль Юнга и коэффициент Пуассона. Кроме этих двух констант, используются две другие упругие константы, которые непосредственно связаны с шаровой и девиатор-ной составляющими тензора напряжений модуль объемной деформации К и модуль сдвига (перекоса) О.  [c.55]

Тензор напряжений можно разложить на изотропную составляющую и девиатор  [c.11]

Параллельно с этим упрощенным подходом разработана усложненная математическая модель геофизической турбулентности, для которой, наряду с базисными гидродинамическими уравнениями для среднего движения, выведены эволюционные уравнения переноса для одноточечных вторых моментов пульсирующих в потоке термогидродинамических параметров многокомпонентной реагирующей газовой смеси. Модель включает в себя эволюционные уравнения переноса для составляющих тензора турбулентных напряжений Рейнольдса, составляющих векторов турбулентного потока тепла и турбулентной диффузии, уравнения переноса для турбулентной энергии и дисперсии пульсаций энтальпии среды, а также уравнения переноса для парных корреляций пульсаций энтальпии и состава смеси и смешанных парных корреляций пульсирующих концентраций отдельных компонентов смеси. Такой подход обеспечивает возможность расчета сложных течений многокомпонентных реагирующих газов с переменной плотностью, когда существенны диффузионный перенос турбулентности, конвективные члены и предыстория потока, и потому более простые модели (основанные на идее изотропных коэффициентов турбулентного обмена) оказываются неадекватными.  [c.313]


Приведенные уравнения свидетельствуют о том, что скорость неупругой деформации есть функция разности напряженных состояний между действительным состоянием и состоянием, отвечающим статическому условию текучести. Эта функция определяет скорость неупругой деформации согласно закону вязко сти Максвелла. Упругие же составляющие тензора деформаций от скорости деформации не зависят. В определяющих уравнениях (3.3) или (3.5) учтено также упрочнение материала. С помощью функции Р можно описать как изотропное, так и анизотропное упрочнение  [c.23]

Для замыкания системы уравнений при турбулентном режиме течения используются различные алгебраические модели коэффициентов переноса, являющиеся непосредственным обобщением двумерной модели переноса. При этом делается предположение об изотропности коэффициента турбулентной вязкости. Это значит, что турбулентная вязкость является скалярной функцией координат и составляющих тензора скоростей деформации. Направление суммарного касательного напряжения совпадает с направлением результирующего градиента скорости О с компонентами ди/д , дхю/д ). Длина пути перемешивания Прандтля является скалярной функцией и не зависит от преобразования координат /1=4=/. Обобщение гипотезы Прандтля для пространственного пограничного слоя естественно задать в виде  [c.322]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Рассмотрим слоистую изотропную длинную круговую цилиндрическую панель радиуса R и толщины h, несущую поперечную нагрузку. Используем систему координат ip, у, Z, описанную в предыдущем параграфе. Примем, что длина панели достаточно велика, условия ее опирания и нагружения не зависят от координаты у и рассмотрим задачу о выпучивании панели по цилиндрической поверхности. Целесообразно одновременно рассматривать задачу об устойчивости круговой арки единичной ширины, которую будем представлять себе вырезанной" из панели двумя нормальными сечениями у = с, у = с+1 (с = onst). Уравнения этой задачи, как будет видно из дальнейшего, лишь значениями некоторых коэффициентов отличаются от уравнений выпучивания панели по цилиндрической поверхности. Уравнения нейтрального равновесия получим из уравнений (3.5.10), в которых следует учесть, что для обеих рассматриваемых конструкций вариации составляющих тензора напряжений равны нулю.  [c.123]


Закон Гука (Нооке)- Рассмотрим однородное изотропное тело, т. е. тело, упругие свойства которого одинаковы во всех точках и у которого в отношении упругих свойств нн. одно иаправление не отличается чем-либо от других. Картину напряженного состояния дают составляющие тензора напряжения  [c.27]

Сделанные упрощения не справедливы для многофазного сплава типа механической смеси, состоящего из разнородных кристаллических зерен с кубической решеткой или из разнородных упругоизотропных зерен, имеющих различные упругие характеристики. Несмотря на то, что в таком поликристалле каждое зерно в отдельности изотропно по отношению к тепловому расширению и всестороннему равномерному растяжению или сжатию, модули всестороннего сжатия поликристалла и отдельных зерен различны, а избыточная температурная деформация зерен Лей =7 О. Поэтому в (2.69)—(2.72) не удается перейти от тензорных компонентов напряжений и деформаций к девнаторным компонентам, т. е. на неупругое деформирование таких поликристаллов в общем случае должны повлиять и гидростатическая составляющая тензора осредненных напряжений, и даже однородное по объему изменение температуры. Влияние этих факторов не учитывается в распространенных феноменологических теориях неупругого деформирования материала (см. 1.5).  [c.104]

При анализе процессов неупругого деформирования и разрушения физически изотропных тел целесообразно разделение тензора напряжений на две составляющие — девиатор и шаровой тензор Tq = qTi  [c.33]

Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

В теории вязкопластичности эволюция поверхностей, ограничивающих область упругости в пространстве напряжений, может быть представлена сочетанием расширения (сужения), вращения, переноса и дисторсии поверхности текучести и поверхностей равных потенциалов - правилом кинематического и изотропного упрочнения. Введение тензора внутренних напряжений (тензора микронапряжений) ру как реального центра поверхности течения связано с наличием остаточньк напряжений на уровне микроструктуры и микронапряжений, связанных с разнообразными неоднородностями в структурных составляющих на мезоуровне. Дальнейшие упрощения заключаются в ведении дополнительных гипотез  [c.372]


Смотреть страницы где упоминается термин Изотропная составляющая тензора напряжений : [c.117]    [c.456]    [c.173]   
Ротационные приборы Измерение вязкости и физико-механических характеристик материалов (1968) -- [ c.11 ]



ПОИСК



Изотропность

Напряжение—Составляющие

Напряжения. Тензор напряжений

Тензор его составляющие

Тензор изотропный

Тензор напряжений



© 2025 Mash-xxl.info Реклама на сайте