Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уровень физический

Число циклов до перелома кривой усталости Ng — абсцисса точки выхода кривой усталости на горизонтальный участок (уровень физического предела выносливости).  [c.12]

Не менее важным элементом качества труда являются условия труда, так как степень тяжести и вредности труда предопределяет уровень физического и нервного напряжения работника, объем затраченной им энергии.  [c.21]

Эксплуатация КУ и ЭТА производится в строгом соответствии с Правилами устройства и безопасной эксплуатации паровых котлов Госгортехнадзора, Правилами технической эксплуатации электрических станций и сетей (ПТЭ), Правилами технической эксплуатации теплоиспользующих установок и тепловых сетей ПТЭ [15], требованиями технических условий и инструкций заводов-изготовителей. При этом необходимо учитывать особенности и требования к проведению технологического процесса (температурный уровень, физические и химические свойства  [c.150]


Однако эта точка зрения разделялась не всеми исследователями. Многие физики и механики считали, что учет случайности является временным отступлением от классических теорий, что по мере накопления знаний роль случая будет сведена к нулю. Познавая в будущем более глубокий уровень физических процессов, можно будет объяснить явления, ныне для нас случайные, как проявление полностью детерминированных процессов, которые в настоящее время скрыты от нашего взора.  [c.12]

Программная поддержка операции ввода-вывода, обеспечиваемая ОС РВ, имеет иерархическую структуру. Самым верхним уровнем иерархии по степени удобств, предоставляемых системой пользователю, является обмен информацией на уровне логических записей. Затем следует уровень обмена блоками и, наконец, физический уровень ввода-вывода.  [c.140]

Физический уровень ввода-вывода — самый низкий уровень в организации обмена. С помощью специальной  [c.141]

Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]

Физический маятник массы М вращается вокруг неподвижной горизонтальной оси. Момент инерции маятника относительно этой оси равен /, расстояние от центра масс маятника до оси равно I. Составить дифференциальное уравнение Якоби — Гамильтона, найти его полный интеграл и первые интегралы движения маятника (нулевой уровень потенциальной энергии взять на уровне оси маятника).  [c.376]

Физический уровень представления данных отражает способ хранения и структуру данных с учетом их расположения на носителях информации в запоминающих устройствах ЭВМ.  [c.53]

Очень важно обеспечивать однородность исходного сырья, материалов, заготовок и полуфабрикатов по химическому составу и структуре, равный уровень и стабильность механических, физических и химических свойств, а также точность и стабильность их размеров и форм.  [c.18]


В системе поток — материал выделяются два физических уровня короткодействующий динамический и дальнодействующий термодинамический описание последнего возможно с помощью второго начала термодинамики для локально равновесных систем. Динамический уровень в подобных системах математически не описан.  [c.25]

Таким образом, для описания процессов различной физической природы можно получить единый универсальный аппарат исследования. Построение моделей базируется на сравнительно немногих общих допущениях теории теплового, магнитного, упругого полей без ограничений по форме исследуемой области и обеспечивает необходимый уровень адекватности описания. Найденные электрические напряжения в узлах эквивалентной сетки-аналога характеризуют поле в соответствующих  [c.123]

На рис. 8.1, а показаны квантовые переходы центра люминесценции, отвечающие наиболее простому физическому механизму люминесценции. При возбуждении центр переходит с уровня 1 на уровень 2, а при обратном переходе рождается фотон (возникает люминесцентное свечение). Частота излучения люминесценции соответствует разности энергий возбуждения и основного уровня со = ( . 2—  [c.187]

Вопрос о применимости метода возмущений утрачивает остроту, если вместо дискретного конечного уровня рассматривать непрерывный спектр или достаточно размытый уровень. В этом случае физически реально рассмотрение вероятности уже не перехода п- -т (поскольку бессмысленно ставить вопрос о вероятности попадания в какое-то одно определенное энергетическое состояние из непрерывной совокупности состояний), а перехода n-v(m-i-m-j-Дт). Иным.ч словами, теперь рассматривается вероятность перехода в некоторый интервал Дт конечных состояний. В связи с этим для применимости метода возмущений требуется обеспечить малость не величины  [c.249]

Требования подобия по физическим условиям однозначности (по физическим параметрам) могут иметь различную форму. Если свойства жидкости в-системе не изменяются, то физические условия не содержат параметрических критериев, и поэтому каких-либо условий на выбор физических параметров рабочей жидкости (кроме их постоянства) физические условия однозначности не накладывают. При изучении тепловых явлений, когда развитие процесса зависит от температурного поля системы, необходимо, чтобы число Прандтля для образца и модели было одним и тем же, Рг =Рг". Это условие выполняется автоматически, если в образце и модели используется одна и та же жидкость и одинаковый температурный уровень систем. В общем случае условие одинаковости критериев Прандтля в образце и модели накладывает дополнительные ус-  [c.24]

Исследовать влияние коэффициента температуропроводности на уровень и распределение температур в носовом профиле стреловидного крыла сверхзвукового летательного аппарата кратковременного действия, имеющего форму затупленного клина (рис. 17.2). Аэродинамический нагрев тел, обтекаемых потоком воздуха, обусловлен эффектами диссипации энергии, повышением температуры в зонах динамического сжатия потока и высокой интенсивностью теплоотдачи, характер- р с 172 ной для носовых частей затупленных тел. Информация о тепловом режиме элементов конструкции необходима для прочностных расчетов. Температурное поле в носовом профиле помимо условий обтекания, формы и геометрических размеров тела в условиях неустановившегося полета зависит также от физических свойств материала, из которого изготовлен профиль. В частности, неравномерность распределения температур и, следовательно, величины термических деформаций зависят от коэффициента температуропроводности материала а = = Х/(ср).  [c.263]

Для этого надо, чтобы специальное устройство отметило изменение скорости и привело в действие исполнительные органы, регулирующие физические параметры, определяющие уровень  [c.331]


Из сопоставления (51) со случаем моноэнергетического излучения (3) видно, что неустранимой физической причиной возникающих ошибок является зависимость ЛКО от энергии фотонов. Вследствие этого абсолютный уровень указанных ошибок в отсчетах проекций Рн ( > ф) изменяется в зависимости от элементного состава разнообразных промышленных материалов, их распределения внутри контролируемого сечения и соотношения вкладов фотонов различных энергий Ф ( ) к ( ) в экспериментальную оценку (51).  [c.416]

Автор сделал попытку построения такого методологического подхода к решению проблемы надежности, при котором сочетается применение детерминированных и вероятностных расчетов Использование физических закономерностей, описывающих изменения начальных свойств изделий (и в первую очередь при изнашивании), позволило получить модели для оценки изменений работоспособности машин и рассмотреть влияние всех основных факторов, определяющих уровень надежности.  [c.4]

Этот уровень исследований позволил развить фундаментальные представления о несовершенстве в кристаллах и особенно о дислокациях, их взаимодействиях и, движении, о силах упругости с точки зрения квантовой механики, о диффузии атомов в твердых телах ИТ. д., которые являются физической основой для решения основных задач прочности и долговечности материалов,  [c.59]

В настоящем разделе ставилась цель показать, что современный уровень развития теории деформационного упрочнения поликристаллов позволяет уже перейти от эмпирических методов к строго физическим решениям конкретных прикладных задач, связанных с анализом технологических режимов обработки давлением, а также с объяснением и прогнозированием комплекса механических свойств материала, прошедшего обработку. В качестве примера рассмотрим  [c.181]

Уровень физической величины — логарифм отношения данного 1ачепя X величины к пороговому (исходному) значению этой величины  [c.163]

В технологии ATM введены три уровня (рис. 2.11). Адаптационный уровень AAL аналогичен транспортному уровню в ЭМВОС, на нем происходит разделение сообщения на пакеты (до 64 К баиг) с управляющей и контрольной информацией, те, в свою очередь, делятся на 48-байтные ячейки, вьшолняется преобразование битовых входных потоков в один поток с соблюдением пропорций между числом ячеек для данных, голосовой и видеоинформации, определяется вид сервиса. При этом должна поддерживаться скорость передачи данных, необходимая для обеспечения соответствующего сервиса. На следующем уровне, называемом ATM, к каждой ячейке добавляется пятибайтовый заголовок с маршрутной информацией. Третий уровень — физический Р — служит для преобразования данных в электрические или оптические сигналы.  [c.77]

Итак, задача заключается в том, чтобы определить специфические особенности той физической обстановки, в которой справедлив тот или иной принцип (т. е. принцип возрастания или принцип Т5ыван1 я энтропии), и выяснить условия, при которых один из них переходит в другой. Эта задача, для решения которой современный уровень физических знаний еще недостаточен, далеко выходит за пределы термодинамики. Таким образом, с точки зрения философской принцип возрастания энтропии никоим образом  [c.139]

Изолиния. Линия, указывающая постоянный уровень физического параметра, на пример температуры или давления. Часто используется в анализе конечных элемевтов для указания областей сопоставимых напряжения и деформации.  [c.308]

Повышению точности и достоверности будущей МПТШ способствует ряд достижений в измерительной технике. Характерная особенность термометрии состоит, как известно, в том, что температура может быть измерена только посредством некоторой шкалы, или, иначе говоря, только через измерения других аддитивных физических величин. Поэтому прогресс термометрии особенно сильно зависит от успехов в других областях измерительной техники. Отметим два достижения, оказавшие большое влияние на точную термометрию, развитие которой прослежено в книге Куинна. Это создание очень точных поршневых манометров для измерения давления порядка 0,1 МПа в газовых термометрах, и особенно совершенствование электроизмерительных приборов на основе трансформаторов отношений, позволивших поднять на качественно новый уровень магнитную термометрию и термометрию по сопротивлению.  [c.6]

Физический маятник представляет собой тело массы т, вращающееся вокруг горизонтальной оси его момент инерции I и смещение / центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего разма.ха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение т точки подвеса можно считать белым шумом постоянной интенсивности Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов п угла за уровень, в 2 раза превышающий среднее 1свадратнческое значение в течение времени Т.  [c.447]

Этот факт имеет достаточно прозрачное физическое объяснение. При неизменных геометрии трубы и степени расширения в ней увеличение ц достигается прикрьггием дросселя, т. е. уменьшением площади проходного сечения для периферийных масс газа, покидающих камеру энергоразделения в виде подогретого потока. Это равносильно увеличению гидравлического сопротивления у квазипотенциального вихря, сопровождающегося ростом степени его раскрутки, увеличением осевого градиента давления, вызывающего рост скорости приосевых масс газа и увеличение расхода охлажденного потока. Наибольшее значение осевая составляющая скорости имеет в сечениях, примыкающих к диафрагме, что соответствует опытным данным [116, 184, 269] и положениям усовершенствованной модели гипотезы взаимодействия вихрей. На критических режимах работы вихревой трубы при сравнительно больших относительных долях охлажденного потока 0,6 < р < 0,8 течение в узком сечении канала отвода охлажденных в трубе масс имеет критическое значение. Осевая составляющая вектора полной скорости (см. рис. 3.2,а), хотя и меньше окружной, но все же соизмерима с ней, поэтому пренебрегать ею, как это принималось в физических гипотезах на ранних этапах развития теоретического объяснения эффекта Ранка, недопустимо. Сопоставление профилей осевой составляющей скорости в различных сечениях камеры энергоразделения (см. рис. 3.2,6) показывает, что их уровень для классической разделительной противоточной вихревой трубы несколько выше для приосевых масс газа. Максимальное превышение по модулю осевой составляющей скорости составляет примерно четырехкратную величину.  [c.105]


Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Для выполнения автоматизированного проектирования необходимо составить модель данных, которая включала бьт совокупность данных и их взаимосвязи, обеспечивающие решение всех предусмотренных в САПР задач. Такая модель имеет три уровня, отвечающие различным степеням абстрагирования от бесконечного многообразия реальных объектов. На первом уровне из этого многообразия выделяются только те объекты, которые необходимы для решения определенного круга задач, и формируется логическая (информационная) структура данных. На втором уровне эта структура преобразуется в физическую структуру данных, которую можно непосредственно представить в памяти ЭВМ и обработать с помощью программ. Наконец, третий уровень представляет собственно внутримашинное размещение элементов данных.  [c.78]

Уровень достижений в области получения твердых материалов с улучшенными свойствами сейчас высок. Однако эти достижения были бы невозможны без научно обоснованного подхода к проблеме улучшения механических свойств. Возможности для такого подхода появились с развитием физических методов исследования твердых тел и прежде всего структурных рентгеновского, электро-нографпческого, нейтронографического и электронно-микроскопи-ческого. Стало ясно, что. большинство свойств твердых тел зависит от особенностей их атомной структуры. Крупным шагом в развитии физической теории прочности твердых тел явились теория несовершенств и, в первую очередь, теория дислокаций. Оказалось, что механическая прочность твердых тел зависит, главным образом, от дислокаций и что небольшие нарушения в расположении атомов кристаллической решетки приводят к резкому изменению такого структурно чувствительного свойства, как сопротивление пластической деформации.  [c.115]

Электронный парамагнитный резонанс. Его наблюдают во всех веществах, в которых имеются неспаренные (нескомпенсирован-ные) электроны. Для выяснения физической природы ЭПР рассмотрим изолированный атом (или ион), обладающий результирующим магнитным моментом. При наложении на атом с полным моментом импульса j внещнего магнитного поля Яо происходит квантование магнитного момента атома. Каждый уровень с определенным квантовым числом / расщепляется на 2/+1 подуровня с разными значениями магнитного квантового числа зеемановское раси епление)  [c.351]

Физический процесс, происходящий в светочувствительном слое фотопластинки, можно представить следующим образом. Под действием света некоторые электроны микрокристаллов бромистого серебра AgBr возбуждаются и переходят на более высокий уровень проводимости. Двигаясь в пределах мнкрокристалла, они вступают в контакт с зародышем серебра центра светочувствительности. В результате центр заряжается отрицательно и притягивает некоторые ионы серебра, которые нейтрализуются электронами и превращаются в атомы серебра. Эти атомы присоединяются к уже имеющемуся центру, который вырастает до размера центра проявления, включающего до 20 атомов серебра.  [c.192]

Для решения этой проблемы необходимо выяснить множество принципиальных вопросов. Постоянны ли постоянные и сколько их Как числовые значения констант сказываются иа устройстве Вселенной и возможности существования разума Единство природы требует, чтобы физическая проблема была связана с вопросалш происхождения жизни, что поднимает ее до уровня общечеловеческой проблемы. Вопросы будущего Вселенной не есть одна из частных задач физики, ее реше 1ие волнует все человечество. Проблема фундаментальных физических постоянных еще ждет решения. Трудности неимоверно велики В великих тайнах Биг Бэнга (Большого Взрыва — с англ.) и дальнейшей судьбы Вселенной, наверное, многое прояснится после того, как будет создана теория, объясняющая значения мировых постоянных — скорости света, заряда электрона и др. Сегодня все они бсрутся из опыта, и мы не знаем, почему они таковы. Науку не удовлетворяет такое положение вещей. Она должна перейти на следующий, более глубокий уровень. Хотя, честно говоря, пока у нее нет никаких идей, как совершить этот переход [75].  [c.201]

Для измерения физической величины неэлектрической природы электрическим методом ее необходимо преобразовать в электрическую величину. Например, такие неэлектрические величины, как линейные и угловые перемещения, скорость перемещения, давление и температура, напряжения и деформации, уровень жидкости, преобразуются в электрические величины с помощью измерительных преобразователей, которые рассматриваются ниже. Область применения этих преобразователей может быть существенно расщи-рена с использованием измерительных преобразователей неэлектрических величин в неэлектрические же величины, которые перечислены выше. Так, например, усилие или крутящий момент можно преобразовать в линейное или угловое перемещение в термоанемометре скорость газа, а в тепловом вакуумметре — давление разреженного газа однозначно связывают с температурой нити накала и т. п.  [c.141]

Для высокоскоростных летательных аппаратов кратковременного действия применение теплозащитных покрытий является эффективным средством снижения температурного уровня в элементах конструкции. Используя численный метод, описанный в задаче 17.17, исследовать влияние толщины теплозащитного покрытия на уровень температур в носовом профиле крыла летательного аппарата. Носовой профиль наготовлен из хромоникелевой нержавеющей стали 12Х18Н10Т. На внешнюю поверхность профиля нанесен слой покрытия толщиной б. Покрытие имеет следующие физические свойства а — X 1 ср) — 0,2 10 mV Ь =  [c.272]


Смотреть страницы где упоминается термин Уровень физический : [c.69]    [c.78]    [c.139]    [c.80]    [c.555]    [c.18]    [c.19]    [c.157]    [c.73]    [c.161]    [c.299]    [c.13]    [c.447]    [c.245]   
Парогенераторные установки электростанций (1968) -- [ c.182 ]

Основы автоматизированного проектирования (2002) -- [ c.42 ]

Основы теории и проектирования САПР (1990) -- [ c.271 , c.279 ]



ПОИСК



Подуровни физического уровня модели данных

Сборочная Образование формы — Понятие 13 Установка элементов 75-78 — Физические уровни

Создание физического уровня модели данных

Уровни энергии бесспиновой частицы в кулоновском поле. Тонкая структура уровней энергии атома водорода. Состояния с отрицательной энергией Физические свойства вакуума

Физические свойства звука и нормативные требования к уровню шумов

Элементы теории поля. Кинематика сплошной среды Поле физической величины. Скалярное и векторное поля Поверхности уровня. Векторные линии и трубки



© 2025 Mash-xxl.info Реклама на сайте