Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали Запас прочности — Расчет

Величина запасов прочности при расчете на выносливость зависит от точности определений усилий и напряжений, от однородности материалов, качества технологии изготовления детали и других факторов. При повышенной точности расчета (с широким использованием экспериментальных данных по определению усилий, напряжений и характеристик прочности), при достаточной однородности материала и высоком качестве технологических процессов принимается запас прочности я = 1,3- 1,4. Для обычной точности расчета (без надлежащей экспериментальной проверки усилий и напряжений) при умеренной однородности материала п=1,4-ь1,7. При пониженной точности расчета (отсутствии экспериментальной проверки усилий и напряжений) и пониженной однородности материала, особенно для литья и деталей значительных размеров, п = = 1,7 3,0.  [c.678]


Уточненный расчет проводится как проверочный на основе окончательно разработанной конструкции вала и служит для определения фактических запасов прочности. Необходимо, чтобы запас прочности > 1,5, но, учитывая повышенные требования к жесткости валов, лучше, если п > 2,5 3. При таком запасе прочности специального расчета на жесткость вала не требуется. Уточненный расчет вала производят с учетом влияния на прочность вала наличия концентраторов напряжений отдельных элементов вала. Как известно, такими концентраторами являются шпоночные пазы, сквозные поперечные отверстия под штифты, место перехода от одного диаметра к другому, резьбы, канавки для установочных колец и канавки для выхода режущего инструмента или шлифовального круга. Прочность вала также зависит от величины контактных напряжений в месте посадки на валу детали с натягом.  [c.136]

Конструктору штампов, как правило, не приходится выполнять какие-либо расчеты для определения размеров деталей штампов, его задача — максимально использовать существующие нормативные данные в виде стандартов, нормалей и руководящих технических материалов (РТМ). Однако проверочные расчеты на прочность, устойчивость и жесткость необходимы, так как только они гарантируют возможность работы штампа (особенно его рабочих деталей) без разрушения с необходимым запасом прочности. Проверочному расчету подвергают пуансоны малого диаметра, матрицы (в том числе бандажированные), плиты блока штампа, буферные устройства, подкладные пластины, крепежные детали и пр.  [c.282]

Детали машин рассчитывают по коэффициенту запаса прочности. Такой расчет наиболее точен, так как позволяет учесть ряд факторов, влияющих на прочность, а именно концентрацию напряжений, размеры деталей, способ упрочнения и др.  [c.37]

Погрешности приближенных расчетов существенно снижаются при использовании опыта проектирования и эксплуатации аналогичных конструкций. В результате обобщения предшествующего опыта вырабатывают нормы и рекомендации, например нормы допускаемых напряжений или коэффициентов запасов прочности, рекомендации по выбору материалов, расчетной нагрузки и пр. Эти нормы и рекомендации в приложении к расчету конкретных деталей приведены в соответствующих разделах учебника. Здесь отметим, что неточности расчетов на прочность компенсируют в основном за счет запасов прочности. При этом выбор коэффициентов запасов прочности становится весьма ответственным этапом расчета. Заниженное значение запаса прочности приводит к разрушению детали, а завышенное — к неоправданному увеличению массы изделия и перерасходу материала. В условиях большого объема выпуска деталей общего назначения перерасход материала приобретает весьма важное значение.  [c.7]


Требуемый коэффициент запаса прочности зависит главным образом от точности применяемых методов расчета надежности данных о механических характеристиках материала детали степени ответственности детали чувствительности материала к дефектам механической обработки. Для возможно более полного учета перечисленных и ряда других факторов удобно представлять общий коэффициент запаса прочности в виде произведения ряда частных коэффициентов, каждый из которых отражает  [c.327]

Однако, если максимальные расчетные напряжения незначительно меньше предельных, то гарантировать прочность детали рискованно, так как далеко не всегда бывают точно известны действующие нагрузки, сам расчет может носить приближенный характер, и, наконец, могут иметь место некоторые отклонения действительных механических характеристик материала по сравнению с принятыми в расчете. Для надежной работы деталь должна обладать определенным запасом прочности.  [c.285]

При проверочном расчете при помощи главного критерия работоспособности определяются фактические напряжения и коэффициенты запаса прочности детали и сравниваются с допускаемыми величинами, т. е. проверяется условие прочности.  [c.353]

В подавляющем большинстве случаев расчеты на прочность при переменных напряжениях выполняются как проверочные — целью расчета является определение фактического коэффициента запаса прочности для опасного сечения (сечений) рассчитываемой детали.  [c.304]

В практических расчетах определяются Лр и и в качестве запаса прочности детали принимается меньшее из полученных значений.  [c.343]

В практических расчетах, определив и тц, следует принять в качестве запаса прочности детали меньшее из полученных значений.  [c.344]

Изложенный метод расчета позволяет определить степень недоиспользования прочности конструкции, т. е. установить фактический (окончательный) запас прочности в случае хрупкого разрушения. Одновременно устанавливается и безопасный размер трещины, который не приводит к немедленному разрушению детали. Таким образом, проведение расчета с учетом наличия трещины, опирающегося на соответствующий эксперимент, дает уверенность в защите конструкции от хрупкого разрушения.  [c.298]

ПРИМЕРЫ РАСЧЕТОВ НА ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ 601 Решение. Запас прочности детали определяем по формуле (22,22)  [c.601]

Расчет на выносливость обычно производят в форме проверки коэффициента запаса прочности. При симметричном цикле изменения напряжений (растяжение — сжатие, изгиб, кручение) запас прочности детали определяют по следующим формулам  [c.345]

Расчеты на прочность при переменных напряжениях в большинстве случаев выполняют как проверочные. При этом расчет производят в форме проверки расчетного (действительного) коэффициента запаса прочности s для каждого из предположительно опасных сечений детали и сравнении его с допускаемым значением [. ] для данной конструкции, причем должно выполняться условие прочности  [c.25]

На практике при определении запаса прочности рассчитываемой детали только в редких случаях в нашем распоряжении имеется диаграмма усталости детали. Во многих случаях не бывает и полной диаграммы усталости материала, полученной на основании испытания лабораторных образцов при различных асимметриях циклов. Объясняется это длительностью испытаний и сравнительно небольшим числом машин, на которых такие испытания производятся. Поэтому в практике при расчетах часто пользуются приближенными диаграммами усталости.  [c.362]

Для учета случайных нагрузок, возможных неточностей расчета и изготовления изделий, а также других неизвестных переменных вводят коэффициент запаса прочности. С помощью этого коэффициента обеспечивается уменьшение предельного (опасного) напряжения до величины допускаемого, при котором детали или конструкции могут длительно и надежно работать в заданных условиях.  [c.251]

Основной принцип конструирования машин, детали которых подвержены циклическому нагружению, выражен в недопущении их разрушения в пределах заданного ресурса. Реализуется этот принцип на практике с использованием в расчетах запасов прочности и дополняется разрабатываемой системой контроля уже в процессе эксплуатации зон с наибольшими расчетными напряжениями [1]. В зависимости от требований эксплуатации и сложности конструкции, с учетом доступности критических мест для контроля задача по предупреждению утраты работоспособности конструкции может быть решена за счет резервирования, дублирования, переключения мощности воздействия с разрушенного элемента конструкции на другой и др.  [c.18]


Расчет на усталость состоит в определении действующих нагрузок, сопротивления усталости и запаса прочности. Запас проч-ности по напряжениям и долговечности вычисляется в зависимости от характера внешней нагрузки и других условий работы детали. При стационарном (с постоянной амплитудой) периодическом изменении нагрузки, повторяющемся более чем десятки или сотни миллионов раз в течение предполагаемого срока службы, запас прочности вычисляется по формуле  [c.5]

Понятно, что в таком случае в машине одной мощности деталь работает при расчетных условиях с нормальным запасом прочности, в машинах другой мощности та же деталь работает с избыточным запасом прочности. В зависимости от условий службы детали в машине и обусловленного этим метода расчета вместо запаса прочности нередко следует говорить о запасе жесткости, запасе устойчивости и т. д.  [c.22]

Нужно отметить, что большая часть деталей обеих коробок скоростей валы, зубчатые колеса, муфты и т. д.) были выполнены как конструктивные нормали. Так как 56-миллиметровый станок имеет в передней бабке те же. детали за исключением корпуса, что и 76-миллиметровый станок, что оказалось вполне рациональным, так как практика показывает, что изготовление конструктивно нормализованных деталей, по признаку избыточного запаса прочности, является более ЭКОНОМИЧНЫМ, чем изготовление тех же деталей в соответствии с результатами расчета, т. -е. индивидуализированными для каждого отдельного типоразмера станка..  [c.23]

Заготовка, как правило, имеет то или иное количество элементов. Каждый из этих элементов выполняет самостоятельную функцию. Наиболее эффективным путем повышения надежности заготовок является повышение надежности их элементов. Так, например, надежность литой детали может быть повышена созданием более рациональной конструкции ее элементов, применением новых, более совершенных материалов, обладающих повышенными литейными (технологическими) свойствами, коренным улучшением технологии производства, налаживанием контроля и др. Надежность работы деталей машин определяется расчетом их на прочность, предел выносливости, изгиб, срез и т. д. Наиболее трудной задачей при расчете прочности является определение запаса прочности заготовки. Запас прочности И , часто выражается следующим образом  [c.346]

Полученная расчетная зависимость для меры повреждений может быть использована наряду с (4.3), причем во всех случаях, указанных в табл. 4.1, теоретические значения П в момент фактического разрушения, определявшегося на опыте, оказывались не менее близкими к единице, чем помещенные в таблицу величины, полученные на основе расчета по формуле (4.5). Напомним, что рассматриваемое уравнение повреждений предсказывает снижение сопротивления быстрому разрушению согласно зависимости (3.19). Принципиально эта зависимость позволяет оценивать ресурс деталей, работающих в условиях ползучести, по снижению коэффициента запаса прочности на быструю перегрузку. Такой коэффициент запаса обычно устанавливается, например, при расчетах всякого рода подъемно-транспортных устройств. Положим, что этот коэффициент не должен быть меньше некоторой величины По, причем в начале процесса нагружения эксплуатационное напряжение меньше величины Ор (0)/Ло, где Ор (0) — сопротивление быстрому разрушению неповрежденного материала, Ор (0) = С. С течением времени выдержки под напряжением это сопротивление снижается согласно (3.19), т. е. оказывается, что ар (т) меньше, чем Ор (0), причем уменьшается и указанный коэффициент запаса. Ресурс детали исчерпывается с достижением его наименьшей допустимой величины.  [c.107]

На последующих этапах расчета, в процессе конструирования детали, обычно производится определение запасов прочности, которые вычисляются по нагрузкам, соответствующим пределу несущей способности.  [c.434]

Величина запаса прочности существенно зависит от метода расчета расчет, отражающий режим действующих нагрузок в соответствии с данными измерений в эксплуатационных условиях и основанный на статистических закономерностях, позволяет судить о прочности детали более правильно.  [c.480]

Свариваемые детали выполнены из стали СтЗ (прил. 5), для которой От = 220 МПа, тогда [ар] = (з п = 220/1,46 = 150 МПа, где п = (1,4. .. 1,6) - запас прочности при расчете деталей на растяжение [1]. Площадь поперечного сечения уголка 160x160x12 находим по сортаменту [4] 5 = 3740 мм. Тогда допускаемая величина передаваемого усилия  [c.50]

Есть, однако, конструкции, у которых расчетные детали составляют относительно бодь-шую долю массы. К этой категории относятся машины с преобладанием металлоконструкций (кран-балки, портальные и стреловые краны), самолетньш конструкции, ферменные сооружения (опорные каркасы, стойки, вышки, башни, мачты). Для машин и сооружений этого Типа уточнепие расчета и разумное уменьшение запасов прочности дает большой выигрыш в массе. -  [c.161]

Общие сведения о расчетах на прочность. Одной из важнейших задач инженерного расчета является оценка прочности детали по известному напряженному состоянию в опасной точке поперечного сечения. Для простых видов деформаций эта задача решается сравнительно просто по известным формулам определяют максимальные напряжения, которые затем сравнивают с опасными (предельными) для данного материала напряжениями, устанавливаемыми экспериментально. При этом прочность детали считается обеспеченной, если максимальные напряжения не превышают предельных значений. В случае необходимости реализовать требуемый коэффи-циегт запаса прочности максимальные напряжения сравнивают с допускаемыми.  [c.195]

Коэффициент запаса по отношению к пределу текучести материала при расчете деталей из пластичных материалов под действием постоянных напряжений выбирают минимальным при достаточно точных расчетах, т. е. равным 1,.3,..1,5. Это возможно в связи с тем, что при перегрузках, превышающих предел текучести, пластические деформации весьма малы (особенно при сильно неоднородных напряженных состояниях деталей) и обычно не вызывают выхода детали из строя. Коэффициенты запаса прочности увеличивают только для деталей из материалов с большим отношением Ог/Яв, для которых иначе получается недостаточный запас по отношению к временному со-противле1шю.  [c.13]


Таким образом, необходимо иметь возможность оценить прочность при плоском или объемном напряженном состоянии, располагая данными о свойствах материала (значении предельного напряжения) при одноосном напряженном состоянии. Практически эта задача рещается путем замены при расчете на прочность заданного плоского (или объемного) напряженного состояния эквивалентным (равноопасным, т. е. имеющим одинаковый коэффициент запаса прочности) ему одноосным растяжением. Напряжение, соответствующее этому воображаемому (расчетному) линейному напряженному состоянию, также называется эквивалентным (Здкв)- Оно может быть определено расчетным путем по известным для заданного напряженного состояния значениям главных напряжений на основе принятого критерия (признака) эквивалентности различных напряженных состояний. Выбор того или иного критерия эквивалентности зависит в первую очередь от свойств материала рассчитываемой детали, а в отдельных случаях и от вида напряженного состояния.  [c.207]

Расчет детали, служащий для определения ее основных размеров (проектный расчет), обычно выполняется приближенно без учета переменности напряжений, но по пониженным допускаемым напряжениям. После выполнения рабочего чертежа детали производится ее уточненный проверочный расчет с учетом переменности напряжений, а также конструк-1ИВНЫХ и технологических факторов, влияющих на усталостную прочность детали. При этом расчете определяют коэффициенты запаса прочности п для одного или нескольких предположительно опасных сечений детали. Эти коэффициенты запаса сопоставляют с теми, которые назначают для деталей, аналогичных проектируемой при заданных условиях ее эксплуатации. При таком проверочном расчете условие прочности имеет вид  [c.559]

Пример 8.1. Проводится определение запаса прочности и вероятности разрушения для определенной детали парка находящихся в эксплуатации однотипных стационарно нагруженных изделий применительно к многоопорному коленчатому валу однорядного четырехцилиндрового двигателя, поставленного как привод стационарно нагруженных насосных, компрессорных и технологических агрегатов. Основным расчетным случаем проверки прочности для этой детали является циклический изтиб колена под действием оил шатунно-лоршневой группы. Эти силы при постоянной мощности и числе оборотов двигателя находятся на одном уровне с незначительными отклонениями, связанными глайным образом с отступлениями в регулировке подачи топлива и компрессии в цилиндрах. Причиной существенных отклонений изгибных усилий является несоосность опор в пределах допуска на размеры вкладышей коренных подшипников и опорные шейки вала, возникающая при сборке двигателя, а также несоосность, накапливающаяся в процессе службы от неравномерного износа в местах опоры вала на коренные подшипники. Соответствующие расчеты допусков и непосредственные измерения на двигателях позволили получить функции плотности распределения несоосности опор и функцию распределения размаха  [c.175]

При. расчетах на прочность деталей, работающих при переменных напряжениях, изменяющихся цо несиммет- ричному циклу, обычно сначала задаются размерами деталей. Затем по этим размерам и нагрузкам определяют напряжения и получающийся при этом запас прочности. Если запас прочности получается недостаточным, то увеличивают размеры деталей и снова определяют запас прочности. Таким образом, расчет при переменных напряжениях, изменяющихся несимметрично, носит йбычно проверочный характер. Это объясняется тем, что для определения размеров детали по допускаемым напряжениям (среднего напряжения и амплитуды напряжений) надо знать величины допускаемых напряжений, которые сами зависят от асимметрии цикла напряжений, т. е. от г.  [c.361]

Детали должны иметь минимальную массу при достаточной прочиости и быть надежными в эксплуатации, так как их поломка может привести к авариям в машине. Прочность детали обеспечивается правильным выбором материала, надлежаще рассчитанными размерами. Уменьшение массы деталей достигается применением более прочных и экономичных материалов. Применение наиболее точных методов расчета дает возможность получить размеры деталей без излишних запасов прочности. Многие детали должны также обладать достаточной жесткостью, т. е. способностью соп [ютивляться образованию остаточных деформаций. Особое значение это имеет для таких деталей, как валы, оси, О гюры. Жесткость деталей зависит от свойств материала, размеров и формы деталей, поэтому при конструироваиии многие детали машин подвергаются проверочным расчетам на жесткость и специальным испытаниям опытных образцов.  [c.198]

В практике машиностроения применяются проектировочный (определительный) и поверочный методы расчета. Проектировочный расчет дает возможность определить форму, размеры и материал деталей по заданным величинам внешних сил и видам упругих деформаций. Поверочный йсче/7г служит для определения действительных напряжений, испытываемых деталями, с учетом формы размеров, материала детали, а также величины действительных внешних сил и вида упругих деформаций. Однако независимо от способа расчета его основной целью является установление запаса прочности п. При этом должны наиболее полно учитываться конструктивные и технологические факторы, влияющие на прочность, а также режим нагрузки (статический, переменный, ударный, длительный при повышенных или пониженных температурах детали).  [c.244]

Сложные. циклы нагрева и нагружения деталей при расчете долговечности разделяют на участки, на каждом из которых накапливается статическое или усталоетное повреждение. Если цикл повторяется и нагружение не является случайным (например, существует типичный эксплуатационный цикл, в котором характер нагружения деталей машины всегда одинаков), то происходит пропорциональное нагружение материала деталей, при котором соотношение долей статического и циклического повреждений остается неизменным за весь ресурс работы [23]. Это позволяет использовать для анализа предельного состояния и определения запаса прочности представления о поверхности термоциклического нагружения (рис. 98). Для заданных условий нагружения (размаха деформаций Дед, длительности действия нагрузки Тд и ресурса долговечности Л/д) состояние детали характеризуется положением точки А относительно предельной поверхности разрушения. Длительность переходных процессов в цикле здесь исключена из рассмотрения для упрощения анализа, поэтому Тд=ТвЛ д, где Тв — длительность выдержки в цикле.  [c.170]

Значимость расчета определяется напряженностью узла. Если узел работает на пределе, расчет, и при том точный, имеет большее значение. Для мало напряженной детали не имеет смысла создавать сложную расчетную схему. Именно вследствие этого и возник способ расчета в запас прочности , когда условно отбрасываются некоторые несущие элементы, суммируются максимальные нагрузки или совмещаются опасные сечения. Такого рода упрощенный подход дает эффект только в случае не очень напряженных условий работы узла и при доцустимом перетяже-лении.  [c.30]


Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]

Сложившиеся к настоящему времени методы расчета деталей машин заключаются-в следующем. Вначале определяются статические и динамические усилия и соответствующие им максимальные напряжения в сечениях деталей. Затем эти напряжения сопоставляются с предельными напряжениями (пределом текучести или пределом прочности) для принятого -материала деталей в свою очередь, предельные напряжения находятся из справочных данных. С целью учета возможных ошибок при определении цагрузок и выбора величины предельных напряжений задается запас прочности, т. -е. превышение предельных напряжений над расчетными. Если в сечениях рассматриваемой детали имеют место переменные напряжения, то. выполняется расчет детали на усталость, который учитывает уменьшение ее прочности с увеличением числа циклов приложения переменных напряжений,  [c.3]


Смотреть страницы где упоминается термин Детали Запас прочности — Расчет : [c.453]    [c.72]    [c.453]    [c.331]    [c.36]    [c.22]    [c.23]    [c.42]    [c.205]    [c.440]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.524 ]



ПОИСК



Детали Расчет на прочность

Детали Расчеты

Детали двигателя — Запас прочности расчете

Запас

Запас прочности

Запас прочности для деталей — Расчет материалов

Напряжение в детали при асимметричных при расчете запаса прочности

Прочность детали



© 2025 Mash-xxl.info Реклама на сайте