Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали конструкционные деформирования

Условия горячего деформирования высоколегированных сталей и сплавов резко отличаются от аналогичных технологических процессов обработки конструкционных сталей. Сопротивление деформированию высоколегированных сталей и сплавов выше, чем у конструкционных, в 5—8 раз. При штамповке в узком интервале высоких температур при высоких удельных давлениях создаются чрезвычайно тяжелые условия для работы штампового инструмента, поэтому необходимо применение специальных смазок. Обычные графито-масляные смазки оказываются малоэффективными.  [c.170]


Основным механизмом вязкого разрушения является зарождение, рост и объединение пор. В конструкционных сталях при незначительном деформировании поры образуются в первую очередь в результате отслаивания слабо связанных с ферритной матрицей крупных сульфидов марганца (MnS) и включений глинозема (АЬОз) [222]. Такие частицы, как карбиды и нитриды, в сталях связаны с матрицей весьма прочно, и поры могут возникать только при высоких локальных напряжениях. Поэтому для возникновения пор на карбидах необходимы большие пластические деформации.  [c.111]

С целью исследования основных закономерностей деформирования материала у вершины трещины при циклическом нагружении были решены МКЭ упругопластические задачи с использованием теории пластического течения в сочетании с моделью трансляционного упрочнения [72, 83]. Объектом численного исследования служила пластина высотой 60, длиной 480 мм с трещиной длиной L = 20 мм и притуплением б = 0,04 мм (рис. 4.2). Минимальный размер КЭ составлял 0,02 мм, что примерно соответствует размеру зерна конструкционных сталей. Нагружение осуществлялось по двум схемам, представленным на рис. 4.2, а. В первой схеме моделировалось деформирование материала у вершины трещины только по I моде нагружения (Pi =5 0, Рг = 0), во второй —по I и П модам одновременно.  [c.204]

Назначение — штампы объемного холодного деформирования и вырубной инструмент сложной конфигурации, используемые при производстве изделий из цветных сплавов и малопрочных конструкционных сталей.  [c.393]

Назначение мелкие молотовые штампы, крупные (сечением более 200 мм) молотовые и прессовые вставки при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного и массового производства, пресс-формы литья под давлением алюминиевых, а также цинковых и магниевых сплавов.  [c.405]

Таким образом, в настоящее время борированию подвергают стали углеродистые обыкновенного качества и качественные конструкционные, инструментальные углеродистые и низколегированные, легированные конструкционные и высоколегированные, штамповые для холодного и горячего деформирования, быстрорежущие и др. Этим способом упрочняют прокатные и накатные валки, протяжные оправки, давильные ролики, детали насосов, штампов и пресс-форм, кокили, щеки дробильных агрегатов аглофабрик, ножи, детали текстильных и деревообрабатывающих машин и другие виды инструментов и изделий.  [c.49]


Если при испытании стальных образцов, вырезанных из различных мест изделия, обнаруживается практическая идентичность диаграмм деформирования в упругой области и в начале пластической, то, безусловно, допустимо и следует анализировать и проектировать конструкцию из этой стали на основе предположения о ее однородности и изотропии или начальной изотропии. Сложная композиционная структура горячекатаной углеродистой конструкционной стали (состоит из выраженно анизотропных кристаллов феррита и перлита с частицами цементита) может полностью игнорироваться в макроскопической упругой области и в начале пластической, и материал на этом уровне может рассматриваться как изотропный и однородный.  [c.11]

Циклическая анизотропия свойств присуща ряду исследованных материалов как циклически упрочняющимся, так и циклически стабилизирующимся, и разупрочняющимся. В то же время независимо от характера изменения обобщенной диаграммы циклического деформирования большая группа конструкционных сталей и сплавов оказывается циклически изотропными материалами (табл. 2.1.1 и 2.1.2),  [c.68]

Несмотря на то, что в настоящее время имеется большое количество сведений о характеристиках циклического деформирования и разрушения конструкционных сталей и сплавов, необходимо было исследовать материал сильфонных компенсаторов с учетом специфики работы в условиях службы. Характеристики статической прочности и пластичности материала конструкции следующие Спц =30,8 кгс/мм , сго 2 =32,2 кгс/мм , Ов =78,0 кгс/мм , ф = 70%.  [c.181]

В упругой области коэффициент поперечной деформации (коэффициент Пуассона) исследован для различных конструкционных материалов достаточно подробно. Для алюминиевых сплавов, низколегированных и аустенитных нержавеющих сталей колеблется в пределах 0,26 — 0,35. При деформировании за пределами упругости коэффициент поперечной деформации Ц(о-е) возрастает, приближаясь с ростом степени деформирования к предельной (исходя из условий сохранения постоянства объема материала) величине 0,5 [226].  [c.240]

Теория приспособляемости, являющаяся частью общей теории идеальных упруго-пластических сред, основывается на идеализированной диаграмме деформирования, не учитывающей упрочнения материала. Наиболее близкими к такой идеализации являются диаграммы обычных (нелегированных) сталей со средним содержанием углерода, которые имеют площадку текучести. Для конструкционных элементов из таких сталей предпосылки и, следовательно, выводы теории приспособляемости должны выполняться наиболее точно.  [c.33]

Усталостная трещина зарождается, в зависимости от особенностей данного металла и рода напряженного состояния, на разных стадиях циклического деформирования. Исследования [120, 144 показали что при однородных напряженных состояниях (например, растяжение — сжатие гладких образцов) и слабо неоднородных напряженных состояниях (кручение круглых образцов) в относительно однородных металлах (например, конструкционные стали) трещина возникает после накопления 0,8—0,9 общего числа циклов, необходимых для разрушения. Для менее однородных металлов (серые чугуны) в этих же условиях нагружения трещина возникает после накопления 0,2—0,3 общего числа циклов, необходимых для разрушения. В относительно однородных металлах (конструкционные стали) при условии большой неоднородности напряженного состояния (например, концентрации напряжений) трещина возникает в пределах 0,3—0,4 числа циклов от разрушающего числа.  [c.20]

Тяжелонагруженный прессовый инструмент (мелкие вставки знаков, матрицы н пуансоны для выдавливания и т. п.) при горячем деформировании легированных конструкционных сталей н жаропрочных сплавов  [c.680]

Назначение. Пресс-формы для литья под давлением цинковых, алюминиевых и магниевых сплавов, молотовые и прессовые вставки (толщиной или диаметром до 200-250 мм), при горячем деформировании конструкционных сталей, инструмент для высадки заготовок из легированных конструкционных и жаропрочных материалов на горизонтально-ковочных машинах.  [c.435]


Назначение. Для мелких молотовых штампов, крупных (толщиной или диаметром более 200 мм) молотовых и прессовых вставок при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного массового производства.  [c.440]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

В настоящее время известно, что фундаментальной особенностью поведения металлических материалов, подвергающихся разрушению, является непременное наличие перед разрушением микро- или макродеформации [1-21]. В зависимости от структурного состояния, вида нагружения и асимметрии цикла предел вьшосливости ОЦК-металлов и сплавов может быть по своему значению выше и ниже физического предела текучести 3]. В том случае, когда он ниже физического предела текучести (наиболее частый случай для конструкционных сталей), циклическое деформирование начинается со стадии циклической микротекучести [4, 5, 10, 11]. Стадия циклической микротекучести, обнаруженная в работах [7, 8] (в работе [7] она была названа инкубационным периодом усталости), была также найдена в работе А. Плюмтрее и Дж. Мартина [9] при исследовании низкоуглеродистой стали А181 1025. Авторы [9] назвали этот феномен задержкой разупрочнения, поскольку у ОЦК-металлов после этой стадии следует разупрочнение. В работе автора и К. Хольсте [10] и в исследованиях Т. Танаки и М. Хиро-зе [8] было показано, что при циклическом нагружении ниже статического предела текучести петля механического гистерезиса (в условиях испытания с постоянной общей амплитудой деформации за цикл) раскрывается лишь после определенного числа циклов нагружения, которое увеличивается по мере снижения амплитуды циклической деформации. На рис. 2.10 (см. гл. 2) окончанию стадии микротекучести соответствует линия ЗИЕ,  [c.60]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]

ХЗВМФ 0,4—0,48 2,8—3,5 0,6—1,1 0,6—0,9 V 0,4—0,6 Мо 1000 400—420 440—460 50 Для мелких молотовых шта ов молотовых и прессовых вставок (толщи-ной пли диаметром до 300—400 м.м) для инструмента горизонт льнО Ковоч-ных машин при деформировании конструкционных и жаропрочных сталей  [c.306]

Х5МФ1С 0,37- 0,44 4,5—5,5 ( 1 0,8—1,2 Si 0,8—1,1 V 1,2—1,5 Mo 1060 560—580 50 HviaBOB для молотовых и прессовых вставок (толщиной или диаметром до 200—250 мм) при деформировании конструкционных сталей инструмента для высадхи заготовок из легированных конструкционных и жаропрочных ма- териалов на горизонтальных ковочных 1 . . ашинах  [c.306]

Назначение — тяжелонагруженный прессовый инструмент (мелкие вставьи окончательного штампового ручья, матрицы и пуансоны для выдавливания и г. д.) при горячем деформировании легированных конструкционных сталей и жаропрочных сплавов, пресс-формы литья под давлением медных сплавов.  [c.408]

В упругой и упругопластической стадии деформирования в сочетании с энергетическими, силовыми и деформационными критериями позволяет построить диаграммы статического и циклического разрушения. Эти диаграммы являются основой для определения критических нагрузок и долговечности для заданной стадии развития трещины. Для конструкционных сталей при значениях /Стах, меньших 70—100 кгс1мм / , наблюдаются увеличение п и резкое уменьшение скорости развития трещины. Это объясняется влиянием структурной неоднородности мдтериал ,  [c.39]


Так, в результате обработки методом аусформинг серии высоколегированных конструкционных сталей [116] с содержанием легирующих элементов в пределах 0,28—0,57% С 1,42— 1,46% Сг 4,5—4,75% N1 1,43—1,78% Si (марганец отсутствовал) было получено увеличение предела прочности (при низкотемпературном отпуске на 95°) до величины свыше 280 кГ/мм , а предела текучести — свыше 210 кГ1мм - (отпуск при 260°). Ха ктеристики пластичности при этом возросли с 5 до 8— 97о (относительное удлинение) и с 10 до 50% (поперечное сужение). Деформирование данных сталей в процессе НТМО производилось при двух температурах 535° (область относительной устойчивости аустенита) и 315° (игольчато-троостит-ный интервал переохлажденного аустенита). Если в случае деформации при 535° было получено закономерное монотонное увеличение прочностных характеристик с ростом степени обжатия стали, то в случае деформирования заготовок при 315° прочность стали (в частности, ее твердость) возрастала лишь до деформаций порядка 30% после максимума при 30% обжатия твердость стали начинала уменьшаться [116]. Такое снижение твердости при больших степенях деформации объясняется образованием игольчатого троостита в структуре стали, чего не наблюдается в случае деформирования стали в температурной области относительной устойчивости аустенита.  [c.66]

Низкотемпературная термомеханическая поверхностная обработка и (НТМПО) конструкционных сталей не вызывает резкого увеличения напряжений II рода, но приводит к более равномерному распределению напряжений деформированного металла, тем самым снижая действие концентраторов напряжений [74].  [c.14]

Исследован рост зерна в конструкционной стали 12Х2Н4Л при температурах от 90 до 1250° С. Показано, что в горячедеформированном металле образуется разнозернистая структура и что механизмы образования п укрупнения аустенитных зерен в начальный период роста в деформированной п литой стали различны.  [c.167]

Сопротивление малоцикловой прочности, как известно [1, 2, 41, коррелирует с характеристиками пластичности. Применительно к условиям неизотермического нагружения существенно также, что материал подвергается действию всего диапазона переменных температур в каждом цикле нагружения, а пластичность конструкционных материалов в диапазоне реальных температур цикла нагрева, как правило, довольно не постоянна [1,41, и для многих из них наблюдается провал пластичности , как это, например, следует из рис. 2, а для жаропрочного сплава ЭП-693Д. Следует отметить также, что располагаемая пластичность многих высоколегированных стареющих конструкционных сталей и сплавов связана с эффектом охрупчивания и в связи с этим определяется временем циклического деформирования и длительностью пребывания материала при высоких температурах.  [c.37]

Рис. 37. Коррозионное растрескивание сталей в морской атмосфере при нагрузке до 75% предела текучести [37] / — конструкционная низколегированная 2 — сверхвысокопрочная 3 — 5 % Сг сталь для штампов горячего деформирования 4 — 12 % Сг нержавеющая сталь 5 — дисперсиопнотвердеющая нержавеющая (стрелками отмечены не разрушившиеся при данной экспозиции образцы) Рис. 37. <a href="/info/352909">Коррозионное растрескивание сталей</a> в <a href="/info/48182">морской атмосфере</a> при нагрузке до 75% <a href="/info/1680">предела текучести</a> [37] / — <a href="/info/115582">конструкционная низколегированная</a> 2 — сверхвысокопрочная 3 — 5 % Сг сталь для <a href="/info/102618">штампов горячего</a> деформирования 4 — 12 % Сг <a href="/info/51125">нержавеющая сталь</a> 5 — дисперсиопнотвердеющая нержавеющая (стрелками отмечены не разрушившиеся при данной экспозиции образцы)
В больщинстве случаев конструкционные углеродистые и низколегированные марки стали обладают как в литом, так и в деформированном состояниях достаточно больщой технологической пластичностью в широком интервале температур. Окончание ковки многих из них может производиться в двухфазном состоянии, пластичность стали в котором также бывает до определенного предела (вполне конкретного для каждой марки стали) достаточной. В связи с этим установление оптимального температурного интервала деформирования таких марок стали представляет большой интерес с точки зрения его влияния на качество, структуру, механические и служебные свойства готового изделия после полного цикла его обработки (нагрев— деформирование — термическая обработка, включая режимы остывания).  [c.26]

При действии статических напряжений сопротивление материала малым пластическим деформациям характеризуется пределами текучести при растяжении и сдвиге Tj., а также соответствующими диаграммами деформирования (см. гл. I), полученными при однородном напряженном состоянии (растяжение, кручение тонкостенной трубы). Для большинства материалов начальный участок диаграммы деформирования схематизируется (фиг. 1) в видедвух прямых. Ордината точки перелома диаграммы является пределом текучести а-р, величина которого для большинства конструкционных сталей (кроме сталей высокой прочности с > 80 кГ1мм ) соответствует пределу текучести, определяемому по 1опуску пластической деформации (0,2% остаточной деформации при растяжении). Величина напряжения а , соответствующая деформации е, по схематизированной диаграмме, отнесенная к равна  [c.471]

Сравнение предельных степеней деформаций при осадке со скоростями деформирования 0,001 —100 лг/сек показало, что у сплавов АК6, АК8, АМгб и АВ при холодной осадке пластичность повышается на 20—25% у сплавов Х18Н9Т, ЭИ437А, титанового сплава ВТ1—понижается примерно на 40% у конструкционных и инструментальных сталей пластичность не изменяется. При осадке с нагревом до ковочных температур пластичность становится практически не ограниченной. Вместе с тем, опыты по штамповке взрывом труднодеформируемых сплавов показывают удовлетворительную штампуемость.  [c.207]

Поскольку скорость нагрева при ЭМО очень высокая, то, очевидно, полная рекристаллизация при повторных рабочих ходах не успевает произойти. Существует наследственность упрочнения конструкционных сталей при повторной закалке, проводимой в сочетании с ВТМО и НТМО. Эффект наследственности обычно объясняется передачей дефектов кристаллической решетки, образовавшихся в результате предварительного упрочнения. Исследованиями показано, что наследственность наблюдается только в тех случаях, когда при вторичной закалке аустенит образуется по бездиффузионному механизму [11, 52]. Последнее наблюдается при быстром нагреве и наличии тонких исходных структур мартенситного и бейнитного типов. Если учесть, что скорость нагрева при ЭМС очень высока, а повторная закалка сопровождается дополнительным деформированием поверхностного слоя, то можно предположить, что за счет повторных рабочих ходов ЭМО можно достичь существенного повышения механических свойств обрабатываемого металла. Это подтверждается сравнительными испытаниями на износ образцов из стали 32ХНМ, подвергнутых ЭМО с различным числом рабочих ходов. В этой связи необходимо установить предельное число рабочих ходов, которое дает повышение механических свойств поверхностного слоя. Практически число рабочих ходов не должно превышать трех.  [c.21]


ХЗВМФ 0.4—0,43 2.8—3,5 0,6--1,1 0.6—0,9 V 0,-4—0,6 Мо 1050 570 47-43 Для мСьТких молотовых штампов молотовых и прессовых вставок (толщиной или диаметром до 300—400 мм), инструмента горизонтально-ковочных машин при деформировании конструкционных и жаропрочных сталей  [c.362]

ХБМФ1С 0,37—0,44 4,5—5,5 0,8—1,2 51 0,8—1,1 V 1,2—1,5 Мо 1060 560—580 50 лиевых и магниевых сплавов молотовых и прессовых вставок (толщиной или диаметром до 200—250 мм) при деформировании конструкционных сталей инструмента для высадки заготовок из легированных конструкционных и жаропрочных материалов на горизонта л ь ных ковоч ных маши мах  [c.362]

ХНМ Молотовые штампы паровоздушных и пневматических молотов с массой падающих частей свыше 3 т для штамповки цветных сплавов, углеродистых и низколегированных конструкционных сталей штампы для молотов меньшей мощности со сложной и глубокой гравюрой прессовые штампы и штампы машинной скоростной штамповки прн горячем деформировании легких цветных сплавов блоки матриц для вставок горизонтально-ковочных машин  [c.670]

Х5МФО Мелкие молотовые штампы, особенно чистовой штамповки с наименьшей стороной до 100—125 мм молотовые (диаметром или толщиной до 200 мм) и прессовые вставки (предварительного и окончательного ручья, знаки, выталкиватели, внутренние втулки, пресс-штемпели, иглы для прошивки труб) при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного производства формы литья под давлением алюминиевых и магниевых сплавов со стороной до 70— 80 мм  [c.677]

ХЗВМФ Мелкие молотовые штампы молотовые и прессовые вставки (толщиной или диаметром до 300—400 мм) инструмент горизонтально-ковочных машии при горячем деформировании коррозионно-стойких сталей и жаропрочных сплавов, работающий в условиях повышенных давлений (800—1500 МПа) и нагреве до 650—660 °С инструмент для высокоскоростной машинной штамповки конструкционных сталей  [c.677]

Х4ВМФС Инструмент высокоскоростной машинной штамповки и для высадки на горизонтально-ковочных машинах вставки штампов для горячего деформирования легированных конструкционных сталей и жаропрочных сплавов на молотах и кривошипных прессах, работающие в условиях повышенных давлений (800— 1500 МПа) и нагрева до 650—660 °С пресс-формы литья под давлением медных сплавов  [c.677]

Тяжелонагр уженный прессовый инструмент (прошивные и формирующие пуансоны, матрицы и т. п.) инструмент для высадки на горизонтально-ковочных машинах и вставки штампов напряженных конструкций для горячего объемного деформирования конструкционных сталей и жаропрочных металлов н Сплавов (вместо сталей ЗХ2В8Ф и 4Х2В5Л1Ф)  [c.680]

Назначение. Тяжело нагруженный прессовый инструмент (типа прошивньк и формующих пуансонов), инструмент для высадки (на горизонтально-ковочных машинах), вставки штампов напряженных конструкций (режим I). Прессовый инструмент сложной конфигурации типа зубчатых вставок для штамповки и др. (режим II) (для горячего объемного деформирования конструкционных сталей и жаропрочных металлов и сплавов).  [c.439]


Смотреть страницы где упоминается термин Стали конструкционные деформирования : [c.68]    [c.333]    [c.166]    [c.411]    [c.11]    [c.65]    [c.211]    [c.45]    [c.164]    [c.437]   
Справочник металлиста Том 2 Изд.2 (1965) -- [ c.71 , c.86 , c.92 , c.96 ]



ПОИСК



Конструкционные стали

Стали конструкционные стали



© 2025 Mash-xxl.info Реклама на сайте