Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Качество поверхности, обработанной резанием — Влияние

Шероховатость поверхности при электроэрозионной обработке формируется лунками различных размеров и форм, возникающих под воздействием импульсов тока. Поверхность имеет характерные неровности, присущие электроэрозионной обработке, и по характеру шероховатость поверхности значительно отличается от шероховатости поверхности, обработанной резанием Но, как и при механической обработке, качество поверхности оценивается одними и теми же параметрами шероховатости и / г по ГОСТ 2 309—73 и ГОСТ 2789—73 При работе на грубых режимах обработанная поверхность получается блестящей с видимыми следами оплавления металла Поверхность, обработанная на получистовых и чистовых режимах, имеет матовый фон Основное влияние на шероховатость поверхности оказывает электрический режим обработки  [c.99]


Распространенными видами брака деталей в этих случаях являются скалывание кромки уса или галтели, плохое качество обработанной поверхности, трещины в обрабатываемом материале, неравномерная ширина и толщина уса или галтели, обламывание краев листа. Эти виды брака вызываются чаще всего неправильной геометрией инструмента и неправильным выбором режима резания. Особое влияние оказывают также и приемы обработки.  [c.614]

Чистота и точность поверхностей, обработанных точением, зависит главным образом от подачи, скорости резания, геометрии инструмента, глубины срезаемого слоя и материала детали. Влияние этих факторов подробно рассмотрено в главе VI Качество обработанной поверхности .  [c.109]

Для выявления доли влияния геометрических и физических параметров качества поверхности титановых сплавов на повышение износостойкости по данным табл. 15 сравнивался относительный весовой износ цилиндрических образцов, обработанных резанием (1-я группа—точение) и давлением (3-я группа—вибрационное обкатывание) без химико-термической обработки, что соответствует совместному влиянию геометрических и физических параметров качества поверхности, и с химико-термической обработкой — вакуумным оксидированием, что соответствует влиянию только геометрических параметров качества повер.хности, так как физические параметры качества поверхности в данном случае являются одинаковыми.  [c.71]

Качество поверхностей заготовок, как черных, так и в процессе их механической обработки, имеет технологическое значение оно оказывает влияние на величину припусков на обработку, на режимы резания при обработке заготовок, на погрешность установки заготовки для обработки. Это влияние частично рассмотрено при определении погрешности установки и будет развито в дальнейшем изложении. Здесь ограничимся общей характеристикой качества поверхностей заготовок, в первую очередь черных, а затем обработанных различными методами.  [c.150]

Качество механически обработанной поверхности в значительной степени зависит от технологических условий обработки Влияние режимов резания на чистоту поверхности стальных заготовок характеризуется следующими данными.  [c.151]

Изменение степени пластической деформации срезаемого слоя при увеличении скорости резания V вызывает соответствующее изменение и наклепа обработанной поверхности. В диапазоне скоростей резания, характерных образованием нароста, происходит увеличение степени и глубины наклепа. При более высоких скоростях глубина наклепа снижается. Значительное влияние подачи на физические характеристики качества поверхности объясняется увеличением количества выделяющегося тепла и изменением размеров зоны стружкообразования. При износе инстру-  [c.72]


Назначение рационального режима резания. При назначении режима резания необходимо исходить нз ваи- выгоднейшего сочетания отдельных факторов, оказывающих влияние на точность и качество обработанных поверхностей. Кроме того, рациональный режим резания должен обеспечить наименьшую трудоемкость выполнения операций при высокой производительности и наиболее полном использовании режущих свойств инструмента, а также эксплуатационных возможностей станка.  [c.141]

Большое влияние на шероховатость обработанной поверхности оказывают отношение длины прямолинейного участка режущей кромки I к подаче s (рис. 62, а), глубина резания t, правильность установки резца, качество и геометрия его заточки.  [c.120]

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ РЕЖУЩЕГО ИНСТРУМЕНТА И ИХ ВЛИЯНИЕ НА ПРОЦЕСС РЕЗАНИЯ И КАЧЕСТВО ОБРАБОТАННОЙ ПОВЕРХНОСТИ  [c.300]

Углы резца определяют положение элементов режущей части в пространстве относительно координатных плоскостей и относительно друг друга. Эти углы называют углами резца в статике. Углы инструмента оказывают существенное влияние на процесс резания и качество обработанных поверхностей заготовок.  [c.301]

Передний угол у измеряют в главной секущей плоскости между следом передней поверхности лезвия и следом плоскости, перпендикулярной к следу плоскости резания. Передний угол у оказывает большое влияние на процесс резания. С увеличением угла у уменьшается деформация срезаемого слоя, так как инструмент легче врезается в материал, снижаются силы резания и расход мощности. Одновременно улучшаются условия схода стружки, а качество обработанной поверхности заготовки повышается. Чрезмерное увеличение угла у приводит к снижению прочности главной режущей кромки, увеличению износа вследствие выкрашивания, ухудшению условий теплоотвода от режущей кромки.  [c.301]

Угол в тане ф - угол между проекцией главной режущей кромки на основную плоскость и направлением движения подачи - оказывает значительное влияние на шероховатость обработанной поверхности. С уменьшением угла ф шероховатость обработанной поверхности снижается. Одновременно увеличивается активная рабочая длина главной режущей кромки. Сила и температура резания, приходящиеся на единицу длины кромки, уменьшаются, что снижает износ инструмента. С уменьшением угла ф возрастает сила резания, направленная перпендикулярно к оси заготовки и вызывающая ее повышенную деформацию. С уменьшением угла ф возможно возникновение вибраций в процессе резания, снижающих качество обработанной поверхности.  [c.302]

Отрицательное влияние нароста состоит в том, что он увеличивает шероховатость обработанной поверхности. Частицы нароста, внедрившиеся в обработанную поверхность, при работе детали с сопрягаемой деталью вызывают повышенный износ пары. Вследствие изменения наростом геометрических параметров режущего инструмента меняются размеры обрабатываемой поверхности в поперечных диаметральных сечениях по длине заготовки, и обработанная поверхность получается волнистой. Вследствие изменения переднего угла инструмента меняется сила резания, что вызывает вибрацию узлов станка и инструмента, а это, в свою очередь, ухудшает качество обработанной поверхности.  [c.307]

При черновой и получистовой обработке, когда необходимо иметь сильное охлаждающее действие среды, широко применяют водные эмульсии. Количество эмульсии, используемой в процессе резания, зависит от технологического метода обработки и режима резания (5. .. 150 л/мин). Увеличенную подачу жидкости используют при работе инструментов, армированных пластинками твердого сплава, что способствует их равномерному охлаждению и предохраняет от растрескивания. При чистовой обработке, когда требуется получить высокое качество обработанной поверхности, используют различные масла. Для активации смазок к ним добавляют активные вещества - фосфор, серу, хлор. Под влиянием высоких температур и давлений эти вещества образуют с материалом контактирующих поверхностей соединения, снижающие трение, - фосфиды, хлориды, сульфиды. При обработке заготовок из хрупких материалов (чугунов, бронз), когда образуется элементная стружка, в качестве охлаждающей среды применяют сжатый воздух, углекислоту.  [c.312]


Скорость резания оказывает наибольшее влияние на производительность процесса, стойкость инструмента и качество обработанной поверхности.  [c.561]

В табл. 3.18 приводятся рекомендации по выбору глубины резания. Относительно небольшое влияние глубины резания на период стойкости резцов при точении позволяет при черновой обработке весь припуск снимать за один рабочий ход (кроме снятия повышенных припусков при обработке на маломощных станках). При чистовом точении число проходов зависит от требуемых параметров шероховатости и точности обработанной поверхности. При тонком точении с высоким качеством поверхностного слоя и шероховатостью поверхности от Ка - 0,32...0,16 мкм до Rz = 0,050...0,025 мкм глубина резания может доходить до 0,03 мм (см. табл. 3.44).  [c.113]

Смазочно-охлаждающие жидкости относятся к комплексу средств, обеспечивающих эффективную эксплуатацию режущего инструмента, станка и оказывающих влияние на успешное освоение новых прогрессивных методов обработки металлов. Выбор СОЖ зависит от вида обработки (черновая или чистовая), обрабатываемого материала (сталь, чугун, цветные металлы), требований к качеству обрабатываемой поверхности, типа технологической операции (точение, сверление, развертывание, резьбонарезание). СОЖ снижает интенсивность силовых и тепловых нагрузок на режущий инструмент и обрабатываемую деталь, позволяют удалять из зоны резания стружку и продукты износа, благоприятно воздействуют на процесс резания металлов значительно уменьшается износ инструмента, наростообразование, повышается качество обработанной поверхности, снижаются затраты электроэнергии на резание. Наиболее эффективно применение СОЖ при обработке вязких и пластичных материалов наименьший эффект дает применение СОЖ при обработке чугуна и других хрупких материалов.  [c.365]

Передний угол у измеряют в главной секущей плоскости между передней поверхностью и основной плоскостью Р . Он оказывает большое влияние на процесс резания. С увеличением у уменьшается работа, затрачиваемая на процесс резания, улучшаются условия схода стружки и повышается качество обработанной поверхности. Но увеличение переднего угла приводит к снижению прочности резца и ускоренному его изнашиванию вследствие выкрашивания режущей кромки и уменьшения теплоотвода. Различают углы положительные (+у), отрицательные и равные нулю. При обработке твердых и хрупких материалов применяют небольшие передние углы, мягких и вязких материалов — углы увеличивают. При обработке закаленных сталей твердосплавным инструментом или при прерывистом резании для увеличения прочности лезвия назначают отрицательные углы у. В зависимости от механических свойств обрабатываемого материала, материала инструмента и режимов резания углы у назначают от -10° до +20°.  [c.447]

Главный угол в плане ф — угол между плоскостью резания Р и рабочей плоскостью Р . Он оказывает значительное влияние на шероховатость обработанной поверхности и продолжительность работы резца до затупления. С уменьшением угла ф возрастают деформация заготовки и отжим резца, появляются вибрации, ухудшается качество обработанной поверхности. Чаще всего угол ф для токарных проходных резцов берется равным 45°, но в зависимости от конкретных условий, (прежде всего от жесткости детали) он может уменьшаться до 30° или увеличиваться до 90° (при обработке длинных и тонких валов).  [c.447]

Нарост влияет на процесс резания и качество обработанной поверхности. Положительное влияние нароста заключается в том, что он меняет форму передней поверхности инструмента, приводя к увеличению переднего угла (у >у) и уменьшению силы резания. Из-за высокой твердости нарост способен резать металл. Он снижает количество теплоты, приходящейся на долю инструмента, удаляя от него центр максимального выделения теплоты, защищает инструмент от изнашивания, увеличивает его стойкость.  [c.461]

Главный угол в плане ф оказывает влияние на толщину срезаемого слоя (при одной и той же подаче), на соотношение составляющих сил, действующих на фрезу, на стойкость фрезы и качество обработанной поверхности. Чем меньше этот угол, тем меньше толщина среза и нагрузка на единицу длины режущей кромки (при одной и той же подаче), тем выше стойкость фрезы, тем чище обработанная поверхность, но тем больше осевая составляющая сил резания. Поэтому малое значение угла ф = Юн-30° (так называемые торцово-конические фрезы) можно применять лишь при достаточно жестких условиях системы СПИД. Кроме того, малое значение главного угла в плане ф затрудняет работу с большой глубиной резания, так как вызывает необходимость увеличения длины режущей части кромки. Поэтому работа фрезой с ф < 30° рекомендуется при глубине резания не выше 3—4 мм.  [c.297]

Металлические детали машин, приборов и других изделий получают литьем жидкого металла в формы, обработкой давлением (прокаткой, ковкой, штамповкой), а также обработкой резанием. Процесс резания металлов заключается в снятии с заготовки определенного слоя металла для получения из нее детали необходимой формы и размеров с соответствующим качеством обработанных поверхностей. Резание металлов на заре развития техники осуществлялось простейшими ручными режущими инструментами. Некоторые из них, например слесарный напильник, граверный штихель, абразивный брусок, сохранились до наших дней и мало изменились. Постепенно, с развитием науки и техники, мускульная работа человека заменялась работой специальных машин — металлорежущих станков. Металлорежущий инструмент (орудие труда) — это часть металлорежущего станка, воздействующая в процессе резания непосредственно на заготовку, из которой должна быть получена готовая деталь. Доля обработки металлов резанием в машиностроении составляет около 30% и, следовательно, оказывает решающее влияние на темпы развития машиностроения. Процесс резания металлов, сопровождающийся деформациями сжатия, растяжения, сдвига, большим трением и тепловыделением, имеет свои закономерности, изучение которых необходимо для того, чтобы сделать этот процесс более производительным и экономичным.  [c.5]


Но качество обработанной поверхности характеризуется не только ее шероховатостью, а также другими факторами, влияющими на работоспособность той или иной детали. Так, износостойкость обработанной поверхности детали (например, при трении стального вала в твердом подшипнике) зависит от шероховатости, степени и глубины распространения упрочнения (наклепа) и остаточных напряжений в поверхностном слое. При этом изменение какого-либо элемента режима резания (например, увеличение подачи), с одной стороны, может снизить износостойкость (вследствие увеличения шероховатости), а с другой стороны — повысить износостойкость (вследствие повышения упрочнения). В зависимости от того, какой из этих факторов будет преобладать, износостойкость с увеличением подачи может или возрастать, или уменьшаться, причем упрочнение поверхностного слоя, полученное в процессе резания, способствует повышению износостойкости только тогда, когда она не сопровождается уменьшением величины остаточных напряжений, которые оказывают на износостойкость наибольшее влияние. Остаточные напряжения снижают подвижность атомов и повышают сопротивление износу (отрыву отдельных частиц металла), причем для повышения износостойкости остаточные напряжения растяжения так же полезны, как и напряжения сжатия.  [c.57]

Для выявления сущности процесса шлифования и определения влияния различных факторов на него большое значение имеет глубина резания ti—толщина среза, снимаемая одним абразивным зерном шлифовального круга. Величиной ti определяется нагрузка на зерно круга (а следовательно, и стойкость круга) и качество обработанной поверхности. Чем меньше ti, тем меньшая нагрузка приходится на зерно, выше его стойкость, менее глубокими будут риски, оставляемые зерном, т. е. более качественной будет обработанная поверхность. Глубина ti возрастает с увеличением окружной скорости заготовки, поперечной подачи, расстояния между абразивными зернами и уменьшается с увеличением окружной скорости круга, диаметра заготовки (при постоянной окружной скорости ее) и диаметра шлифовального круга.  [c.427]

В данной главе будет рассмотрено влияние геометрии инструмента и других факторов на силы и работу резания, а также на качество обработанной поверхности для ряда наиболее употребительных операций механической обработки.  [c.124]

При работе режущего инструмента имеет место значительное трение между стружкой и обрабатываемым материалом, с одной стороны, и инст ментом — с другой. Трение оказывает огромное влияние на весь процесс резания, ибо оно в значительной мере определяет деформацию снимаемого слоя и, следовательно, нагрузку на инструмент, его стойкость и качество обработанной поверхности.  [c.12]

Подводя итоги, можно отметить, что увеличение скорости резания оказывает благоприятное влияние на объем пластической деформации, глубину наклепанного слоя, величину нароста, качество обработанной поверхности и качество твердого сплава.  [c.337]

Величина переднего угла оказывает влияние на такие существенные факторы резания, как количество деформаций, температура резания, усилие резания, качество обработанной поверхности, износ инструмента и его стойкость.  [c.344]

Геометрические параметры сверл. Эти параметры оказывают большое влияние на точность и качество обработанной поверхности, стойкость и прочность инструмента, составляющие усилий резания и деформацию, поэтому выбор их оптимальных величин имеет большое практическое значение.  [c.101]

Известно [49], что каждому из перечисленных способов присущи свои закономерности влияния технологических факторов на такие важные показатели, как качество и шероховатость обработанных поверхностей, производительность шлифования, износ и стойкость кругов. Поэтому в качестве переменных факторов были выбраны подача 5 и глубина резания (. Интервалы варьирования их приведены в табл. 7.2.  [c.144]

Каплеуказатели 964, 965 Качество поверхности, обработанной резанием — Влияние на прочность при переменных напряжениях 390, 392, 393  [c.983]

Знание уровня и частот колебаний станка при холостом ходе, а также амплитуд и частот заданного колебания слоя металла, срезаемого инструментом, позволяет определить амплитуды (а при необходимости и фазы) колебаний при резании. Амплитуда колебаний равна амплитуде волнистости обработанной поверхности, и допустимый уровень определяется требованиями к качеству поверхности обрабатываемой заготовки. Влияние процесса резания на колебания определяется степенью устойчивости системы и различно для разных частот. При отклонениях в пределах лииеари-зуемости системы амплитуды колебаний на заданной частоте при резании  [c.129]

В монографии освещены результаты исследований влияния процесса деформирующего протягивания на основные характеристики качества обработанной поверхности (шероховатость, степень и глубину упрочнения, структурные изменения, остаточные напряжения I рода) и эксплуатационные свойства деталей машин (износостойкость, усталостную прочность, склонность к газовыделению). Рассмотрены вопросы обрабатываемости сталей, упрочненных деформирующим протягиванием (взаимосвязь явлений в процессе резания, износ и стойкость режущего инструмента, качество поверхности после комбинированной деформирующе-режущей обработки). Даны практические рекомендации по использованию процесса деформирующего протягивания, а также по расчету и конструированию протяжек. Приведены результаты внедрения деформирующего протягивания при изготовлении деталей различных типоразмеров и показана высокая экономическая эффективность внедрения в производство.  [c.2]

Производительность шлифования, качество поверхностного слоя, стойкость круга, силы резания и температура в- зоне резания зависят от зернистости круга, вида связки, ширины круга, концентрации (для алмазных и эльборовых кругов), свойств обрабатываемого материа а и режимов резания [12, 29, 39, 68, 70, 110 и др.]. Следовательно, для полного исследования процесса шлифования необходимо учитывать влияние всех этих факторов на выходные параметры технологического процесса — точность и качество поверхности. В то же время анализ требований к точности и качеству изделий из ВКПМ, обработанных шлифованием, показывает, что требуемая точность (11-й квалитет) невелика для шлифования, поэтому в качестве основного критерия оценки полезности процесса принимают качество обработанной поверхности.  [c.141]

В серийном и массовом производстве предварительно устанавливают, сколько должно быть изготовлено деталей до износа инструмента на допустимую величину, и после обработки установленного количества заготовок снимают инструмент для переточки. Оценка износа инструмента по количеству обработанных заготовок называет9я технологическим критерием. Стойкость режущего инструмента зависит от многих факторов от материала инструмента, обрабатываемого материала, геометрии инструмента, режима резания, качества СОЖ и др. Наибольшее влияние на стойкость оказывает скорость резания. Чем она выше, тем больше энергии расходуется на процесс резания, больше выделяется тепла, интенсивнее происходит износ трущихся поверхностей (тепловой и абразивный) и тем меньше период стойкости.  [c.163]

При снятии стружки вся работа резания превращается в эьсвивалент-ное количество теплоты. Теплообразование оказывает значительное влияние на процесс резания. С одной стороны, оно облегчает деформирование материала срезаемого слоя, вследствие чего уменьшается интенсивность изнашивания инструментам повышается качество обработанной поверхности. С другой стороны, повышение температуры до 800... 1000 °С вблизи режущей кромки инструмента приводит к изменению структуры и физико-механических свойств его материала, что обусловливает потерю режущей способности инструмента.  [c.456]


Под термином технологические свойства СОЖ следует понимать шх влияние на главные параметры функционирования системы резания, существенно важные для оценки хода производства или используемые при подготовке производства (см. рис. 2). В соответствии с этим влияние СОЖ на износ л стойкость, на точность и шероховатость обработанных поверхностей является показателем их технологических свойств. В то же время влияние СОЖ, например, на температуру в зоне резания, составляющие силы резания не следует рассматривать в качестве показателя технологических свойств. Однако знание дополнительных параметров функционирования системы резания обеспечивает более полную оценку влияния СОЖ на процесс резания и уменьшает вероятность ошибочного заключения на стадиях предварительных испытаний и экспресс-испытаний технологических свойоств СОЖ. Из этого можно сделать несколько важных для дальнейшего обсуждения выводов.  [c.86]


Смотреть страницы где упоминается термин Качество поверхности, обработанной резанием — Влияние : [c.569]    [c.148]    [c.51]    [c.259]    [c.197]    [c.362]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.0 ]



ПОИСК



Влияние качества поверхности

Геометрические параметры режущего инструмента и их влияние на процесс резания и качество обработанной поверхности

Геометрия инструмента и ее влияние на процесс резания и качество обработанной поверхности

Качество обработанной поверхност

Качество поверхности, обработанной резанием — Влияние на прочность при переменных

Качество поверхности, обработанной резанием — Влияние напряжениях

Качество резания

Поверхности — Качество

Поверхность влияния



© 2025 Mash-xxl.info Реклама на сайте