Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Безвихревое (потенциальное) движение. Потенциал скорости

БЕЗВИХРЕВОЕ (ПОТЕНЦИАЛЬНОЕ) ДВИЖЕНИЕ. ПОТЕНЦИАЛ СКОРОСТИ  [c.32]

Отсюда можно сделать следующий вывод если рассматриваемое поле скоростей имеет потенциальную функцию (потенциал скорости ф), т. е. является потенциальным, то угловые скорости П вращения главных осей деформации частиц жидкости должны равняться нулю, и мы будем иметь безвихревое движение.  [c.80]

Различают вихревые и безвихревые (потенциальные) движения газа. В реальных условиях из-за действия сил вязкого трен Я постоянно образуются вихревые движения, характерные тем, что элементарные частицы вращаются вокруг своих осей. Во многих случаях близкая к истинной картина течения получается при рассмотрении движения как безвихревого. В общем случае для определения скорости v каждой частицы по величине и направлению нужно знать три величины — проекции Vy, вектора скорости v на оси координат х, у, 2 эти координаты могут быть функциями времени t. Исследование течений жидкости в предположении, что движение является безвихревым, упрощается в связи с тем, что для определения скорости по величине и направлению достаточно знание лишь одной функции — потенциала скорости, частные производные от которой по координатам х, у. z дают значения соответствующих проекций скорости и, Vy и V,. Понятие вихревого и потенциального движений относятся как к вязкой, так и к идеальной жидкости, сжимаемой и несжимаемой.  [c.455]


Потенциал скорости. Условием безвихревого (потенциального) движения частиц жидкости является равенство )  [c.475]

В случае установившегося движения потенциал скорости 9 от времени не зависит. Безвихревые движения называются также потенциальными движениями.  [c.111]

Всю картину движения потенциального (безвихревого) потока легко представить, если известен потенциал скорости Ф = Ф(х, у, 2).  [c.313]

Функция ф, определенная указанным образом, обладает свойством потенциальной функции и называется потенциалом скоростей. Соответственно безвихревое движение называют также потенциальным. Введение понятия потенциала скорости дает возможность заменить векторное поле скоростей скалярным полем ф, что значительно упрощает исследование.  [c.67]

Из (18-11) и (18-12) видно, что компоненты скорости фильтрации и , и ) являются частными производными по соответствующим координатам функции Ф, зависящей только от координат. Именно поэтому заключаем, что ламинарное движете грунтовых вод является движением потенциальным (безвихревым), имеющим потенциал скорости ф (потенциальную функцию ф поля скоростей фильтрации), см. 3-5.  [c.584]

При этом уравнение отсутствия завихренности удовлетвори ется, не накладывая никаких условий на выбор функции ф. Так как потенциал скорости можно ввести только для безвихревого движения, то такие течения называют также потенциальными. Подставив выражения (4.16) в уравнение неразрывности (4.13), найдем, что потенциал скорости для несжимаемой жидкости должен удовлетворять уравнению Лапласа  [c.59]

Так как отрицательный градиент ф равен вектору скорости, функция ф носит название потенциала скорости, а безвихревое течение часто называется потенциальным течением. В состоянии безвихревого движения могут быть как сжимаемые, так и несжимаемые жидкости, и функция потенциала скорости будет существовать в каждом из этих случаев.  [c.129]

Если мы хотим описать динамику элемента жидкости в течении, то можно показать, что в наиболее общем случае она состоит из перемещения, вращения и деформации (рис. 17). В теории механики жидкостей движением жидкости мы называем потенциальное течение или безвихревое течение, в котором вращение равно нулю, так что элемент только переносится и деформируется тогда как если элемент еще и вращается, то мы называем течение вращающимся потоком или вихревым течением. Термин потенциальное течение возник из математического понятия потенциала скоростей.  [c.44]


Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]

Уравнения потенциального течения. Допустим, что газ, обтекающий некоторое тело, например, крыло или часть обшивки, является идеальным и изэнтропическим, а движение — безвихревым. Пренебрегая массовыми силами, получим основное дифференциальное уравнение для потенциала скоростей  [c.470]

Теорема Лагранжа. В точках, в которых скорость имеет потенциал, вектор завихренности согласно его определению равен нулю. Иными словами, потенциальное течение жидкости является безвихревым. Возникает вопрос, может ли потенциальное в начальный момент времени течение стать вихревым Для идеальной жидкости ответ на этот вопрос дает теорема Лагранжа, которая утверждает, что если в начальный момент движения идеальной несжимаемой жидкости, подверженной действию потенциальных сил, существовал потенциал скорости, то он будет существовать во все последующие моменты ее движения. Иными словами, движение, однажды будучи безвихревым, всегда им и останется.  [c.39]

Таким образом, функция тока, как и потенциал скорости, является гармонической функцией. И еще одно важное обстоятельство. Если потенциал скорости существует только в потенциальном потоке, то функция тока этим условием не ограничена. Это объясняется тем, что уравнение неразрывности, которое используется для получения этого понятия, справедливо как для вихревого, так и для безвихревого движений.  [c.48]

Таким образом, скорости при безвихревом движении имеют потенциал, поэтому такое движение и называется потенциальным.  [c.281]

В потенциальном (безвихревом) потоке жидкости линии тока нормальны к поверхностям равного потенциала (равного напора), а следовательно, эти поверхности являются живыми сечениями потока. Так как линии тока отличаются определенной кривизной, то при одном и том же падении напора расстояния между соседними линиями равного напора вдоль различных линий тока будут разными. Поэтому гидравлический уклон и местные скорости фильтрации и в пределах живого сечения, которое в отличие от плавно изменяющегося движения уже не является плоским, будут различными. Следовательно, как местные скорости и, так и давления будут  [c.415]

Если несколько явлений, различных по своей физической природе, могут быть выражены одними и темн же дифференциальными уравнениями при одних и тех же условиях однозначности, то такие явления называются аналогичными, а метод их исследования — аналогией. В технической механике жидкости часто используются электрогидродинамическая аналогия (ЭГДА), газогидравлическая аналогия (ГАГА), гидромагнитная аналогия (МАГА) и другие аналогии. Приведенные аналогии относятся к безвихревому (потенциальному) движению невязкой несжимаемой жидкости, которое, как известно, оп-исывается уравнениями Лапласа для потенциала скорости и функции тока д Ф 3 ф  [c.395]


Если Ц. с. равна кулю по любому контуру, проведённому внутри жидкости, то течение жидкости— звихре-вое, или потенциальное, и потенциал скоростей—однозначная ф-ция координат. Если же Ц. с. по нек-рым контурам отлична от нуля, то течение жидкости либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенц. течения в многосвязной области Ц, с. по всем контурам, охватывающим одни и те же твёрдые границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Ц. с. по замкнутому жидкому контуру остаётся постоянной во время движения, если, во-первых, жидкость является идеальной, во-вторых, давление (газа) жидкости зависит только от плотности, в-третьих, массовые силы потенциальны, а потенциал однозначен. Для вязкой жидкости Ц. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляц. обтеканий контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется по Жуковского теореме и прямо пропорционально значению Ц. с.,  [c.441]

Таким образом, в потенциальном (пли безвихревом) потоке жидкости общая картина движения чрезвычайно стройна. Все частицы жидкости движутся, имея скорости, г[аирав-ленные нормально к поверхностям равгазго потенциала скоростей, не совершая при. этом никаких вращений. Поверхности равного потенциала являются живыми сечениями потока.  [c.313]

Потенциальное движение. Если движение жидкости происходит без вращения жидких частиц, то оно называется безвихревым или потенциальным. Для такого движения существует потенциал скорости ф (х, у, z) [для неустановивщегося движения <р(х,у, ,т)], связанный с вектором скорости соотношением  [c.14]

Наиболее замечате-ньные результаты были получены в XIX в. в области исследования плоских установившихся потенциальных течений несжимаемой жидкости. Еще Ж. Лагранж (1781) ввел функцию тока для плоских течений удовлетворяющую для безвихревых течений, как и потенциал скорости, уравнению Лапласа. Кинематическое истолкование функции тока было дано В. Ренкином Разработка аппарата теории функций комплексного переменного дала возможность широко развить методы исследования плоских задач движения несжимаемой жидкости, которые в самом начале развивались совместно со смежными исследованиями задач электростатики. Первые работы, в которых при помощи теории аналитических функций исследуются простейшие задачи электростатики и гидродинамики, относятся к 60-м годам. Существенное развитие области применения теории функций в гидродинамике связано с изучением открытого Г. Гельмгольцем класса так называемых струйных течений жидкости — течений со свободными ли-78 ниями тока, на которых давление сохраняется постоянным. Интерес к этим течениям возник в связи с попытками получить на основе модели идеальной жидкости реальные картины обтекания тел с образованием силы лобового сопротивления и без бесконечных скоростей.  [c.78]

Если Ц. с. равна пулю по любому контуру, проведенному внутри жидкости, то течение жидкости — безвихревое, или потенциальное течение, и потенциал скоростей — однозначная ф-ция координат. Если же Ц. с, по нек-рым контурам отлична от нуля, то течение жидкости — либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенциального течения в многосвязной области Д. с. по всем контурам, охватывающим одни и те же твердые границы, имеет одно и то же значение. Д, с, широко иснользуется как характеристика течений идеальной (без учета вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Д. с, по замкнутому жидкому контуру остается постоянной во все время движения, если 1) жидкость является идеальной, 2) давление (газа) жидкости зависит только от плотности и 3) массовые силы — потенциальны, а нотенциал однозначен. Для вязкой жидкости Д. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляционном обтекании контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется но Жуковского теореме и прямо пропорционально значению Ц. с., плотности жидкости и значению скорости потока на бесконечности. При плоском обтекании идеальной жидкостью крыла с острой задней кромкой величипа Д. с. определяется Чаплыгина — Жуковского постулатом. При обтекании крыла конечного размаха, хорда к-рого в плане меняется, Д. с. вдоль размаха крыла также меняется.  [c.401]

И. Потенциал скорости. Малые движения идеальной (невязкой) жидкости являются безвихревыми (го1ф —0) при этом условии колебательная скорость V есть потенциальный вектор, который может быть выражен как градиеыт некоторой скалярной функции. Положим  [c.60]

Более подробное рассмотрение данного вопроса показывает, что уравнение Бернулли (интеграл Бернулли) оказывается справедливым как безвихревого (потенциального) установившегося движения, так и для вихревого установившегося движения идеальной жидкости, при условии, однакй, что на жидкость действуют объемные силы, имеющие потенциал (в част-EO TH, сила тяжести, которую мы имели в виду, выще). При рассмотрении установившегося вихревого движения идеальной жидкости под скоростью и, входящей в уравнение Бернулли, следует понимать (так же как и в случае безвихревого движения) скорость, относящуюся к действительному векторному полю, отражающему рассматриваемое движение жидкости (к разложению движения на три его вида, поясненных в 3-4, здесь обращаться не следует).  [c.78]



Смотреть страницы где упоминается термин Безвихревое (потенциальное) движение. Потенциал скорости : [c.466]    [c.244]    [c.130]    [c.306]   
Смотреть главы в:

Введение в механику жидкости  -> Безвихревое (потенциальное) движение. Потенциал скорости



ПОИСК



Безвихревое или потенциальное движение

Движение безвихревое

Движение потенциальное

Потенциал скорости

Потенциальное (безвихревое)

Скорость движения



© 2025 Mash-xxl.info Реклама на сайте