Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазеры когерентные колебания

Лазеры когерентные колебания  [c.26]

Излучение лазера когерентно, т. е. связанные с ним колебания электромагнитного поля имеют постоянный во времени сдвиг фазы для двух произвольных точек. Необходимо выделять временную и пространственную когерентность. Первая имеет место при наличии разности оптического пути лазерных лучей, а вторая — при рассмотрении фазовых свойств излучения из разных, разнесенных точек поперечного сечения пучка.  [c.57]


Ходящего источника несущих электромагнитных колебаний. Ранее существовавшие источники давали широкий спектр с очень малой мощностью, приходящейся на отдельные частоты колебаний. Световые волны не были когерентными, а это исключало использование их для передачи сложных сигналов, требующих модуляции излучения. Положение резко изменилось с появлением лазеров. Когерентность и монохроматичность лазерного излучения позволяют модулировать и детектировать луч таким образом, что используется вся ширина оптического диапазона. Оптический участок спектра гораздо шире и вместительнее, чем радиоволновой. Покажем это простым расчетом. Подсчитаем, какое количество информации можно передать одновременно по оптическому каналу связи с длиной волны 0,5 мкм (соответствует 6-10 Гц). Для примера возьмем такой город, как Москва. Пусть в ней имеется 1500000 телефонов, 100 передающих широковещательных радиостанций и 5 телевизионных каналов. Для расчетов примем, что полоса частот телефонного канала составляет 3-10 Гц, радиоканала— 20-10 Гц, телевизионного канала— 10 Гц. Возьмем коэффициент запаса, равный 100. Вычисления произведем по формуле  [c.80]

ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР, лазер — устройство для генерирования электромагнитного излучения оптического диапазона. О. к. г. дает узконаправленный монохроматический когерентный световой луч (см. Монохроматическое излучение, Когерентные колебания) с большой плотностью энергии, что позволяет использовать его в качестве источника сварочного нагрева (см. Лазерная сварка), а также при резке твердых и сверхтвердых материалов.  [c.97]

В эксперименте [47] сверхзвуковая струя создавалась при истечении азота из резервуара высокого давления ( ро =28 атм) в кювету с остаточным давлением 2 мм рт.ст. через цилиндрический канал диаметром D = = 100 мкм. Сечение струи и геометрия возбуждения и зондирования молекулярных колебаний показаны на рис. 4.40. Временная диаграмма нестационарной спектроскопии КАРС в этом эксперименте соответствует рис. 4.19. Для возбуждения использовались одиночные пикосекундные импульсы лазера на Nd YAG (Xi = 1,06 мкм, Тр = 40 пс) и параметрического генератора света ( 2 = мкм, Тр = 20 пс, ширина линии генерации Асо = 30 см ). Зондирование когерентных колебаний осуществлялось импульсами второй гармоники (X = 0,53 мкм, = 30 пс). Для повышения  [c.289]

Какова точка зрения Г. Хакена Этот вопрос в книге специально не обсуждается. О позиции автора можно судить лишь по высказываниям на с. 23, 26. В разделе, посвященном образованию динамических структур в жидкости (с. 23), читаем .. . при еще больших числах Рэлея наступают осцилляции с несколькими основными частотами, которые при дальнейшем возрастании числа Рэлея сменяются совершенно беспорядочным движением, называемым турбулентностью, или хаосом . В разделе, посвященном когерентным колебаниям в лазерах (с. 26) читаем При различных условиях испускание света может становиться хаотическим , или турбулентным , т. е. совершенно беспорядочным. Линейчатый спектр частот при этом сменяется широкополосным .  [c.10]


В оптике лазер можно считать состоящим из большого числа связанных квантовомеханических осцилляторов — электронов рабочего тела лазера. Согласованное действие этих осцилляторов приводит к генерации лазерного излучения в виде когерентных колебаний электромагнитного поля. Во многих экспериментах, выполненных на жидкостях, наблюдаемые явления можно интерпретировать как обусловленные взаимодействием специфических осцилляторов, описывающих сложные движения жидкости. Химические колебания, о которых мы упоминали во введении, также можно рассматривать как примеры поведения связанных осцилляторов. Даже в физике элементарных частиц мы встречаемся с полями, которые так или иначе можно рассматривать как совокупность равномерно распределенных связанных осцилляторов.  [c.189]

Одна из особенностей лазерных источников света заключается в высокой пространственной когерентности световых колебаний в сечении излучаемых ими световых пучков. Как мы увидим ниже, опыт Юнга с лазерным пучком света можно осуществить без входной щели в интерференционной схеме. Оказывается, что при специальном режиме работы лазера щели 51 и 5а можно раздвинуть до краев сечения лазерного пучка без снижения видимости интерференционной картины, но, разумеется, с уменьшением ее пространственного периода.  [c.86]

Для проведения голографических процессов требуется источник когерентного излучения. В настоящее время наибольшую степень когерентности имеют колебания, генерируемые лазерами. Именно после изобретения лазера, когда открылась возможность систематического использования свойств лазерного излучения (его высокой интенсивности, монохроматичности и направленности), голография стала широко применяться на практике.  [c.35]

Излучение лазеров обладает свойством пространственной и временной когерентности, т. е. регулярностью колебаний в пространстве и времени.  [c.52]

Расщепим световой луч с помощью полупрозрачного зеркала А на два пучка (рис. 12.18, а) и, направив эти пучки по разным путям, сведем их вновь на экране В. Луч / проходит путь АВ, затрачивая на это время ti, луч 2 проходит путь АСОВ и затрачивает время /2 > к- Таким образом, на экране будут складываться световые волны, испущенные в моменты времени, отделенные друг от друга интервалом х = Если в течение всего этого времени разность фаз световых колебаний, создаваемых лучами / и 2 в любой точке экрана, сохраняется неизменной, то говорят, что свет обладает временной когерентностью. На экране возникает отчетливая устойчивая интерференционная картина. Максимальное значение т, при котором такая картина еще наблюдается, называют временем когерентности. Временная когерентность непосредственно связана со степенью монохроматичности излучения чем выше степень монохроматичности волны, тем больше время когерентности. В лазерах монохроматичность излучения очень высока, и время когерентности может достигать 10 с и более.  [c.339]

До недавнего времени считалось, что когерентность излучения не важна для термической лазерной технологии. В настоящее время эта точка зрения коренным образом меняется. Во-первых, взаимодействие когерентного лазерного излучения с поверхностью может сопровождаться образованием различных поверхностных электромагнитных волн, которые уже сейчас можно использовать для создания периодических поверхностных структур. Во-вторых, в последнее время среди технологических лазеров все более широкое распространение получают так называемые многолучевые или многоканальные лазерные системы, представляющие из себя набор большого ( 10...10 ) числа пространственно разнесенных лазеров, параллельные пучки которых собираются на обрабатываемом изделии в одно пятно с помощью фокусирующей системы. При сложении двух гармонических колебаний, в том числе и электромагнитных, с одинаковой частотой и разными амплитудами i и 2 и фазами ф1 и ф2 образуются гармонические колебания той же частоты с амплитудой  [c.59]

Этот выходной пучок от ртутной лампы теперь имеет такую же пространственную и временную когерентность, что и Не—Ne-лазер. Поэтому естественно спросить, обладает ли этот свет точно такими же характеристиками когерентности, как и лазерный пучок. Ответ на такой вопрос является отрицательным. Несмотря на предпринятые меры, которые столь отрицательно сказались на выходной мощности, лазерное излучение все же более когерентное, чем отфильтрованный свет лампы. Это различие обусловлено, как показано в разд. 7.4, разными статистическими свойствами двух источников света. В разд. 7.4 мы действительно показали, что флуктуации пучка непрерывного лазера по существу состоят из случайных колебаний его фазы в пределах угла 2я (рис. 7.1,а), в то время как флуктуации теплового излучения обусловлены случайными движениями в окрестности начала координат точки, представляющей величину E t) в плоскости < >, Если теперь два пучка приготовлены таким образом, что они имеют одинаковую временную когерентность, то скорость движения этой характерной точки для обоих случаев на рис. 7.1, а, б будет той же самой. Если затем сделать так, что оба пучка будут иметь одинаковую пространственную когерентность, то указанная скорость движения будет той же самой  [c.472]


Если до недавнего времени условие длительности импульсов излучения лазерных систем для различных практических применений не достигало 10" —10 с, то в последнее время существенно возрос интерес к получению импульсов предельно малой длительности, приближающихся по своему значению к периоду световых колебаний. Стало развиваться новое, представляющее огромный интерес, направление разработка, создание и исследование лазерных систем фемтосекундной длительности. Это требует создания расчетных схем, пригодных для анализа лазеров и лазерных систем с импульсами, длительность которых может быть уменьшена до 10" с. При столь малых длительностях импульсов взаимодействие их со средой становится существенно когерентным, поскольку С Т , Поэтому авторам представлялось целесообразным остановиться здесь еще раз несколько подробнее на особенностях когерентного взаимодействия, хотя основное внимание уделено некогерентному взаимодействию.  [c.31]

Временная и пространственная когерентность лазера обусловлены модовой структурой его излучения. Лазер может генерировать большое число разного вида продольных и поперечных световых колебаний, которые называют модами, имеют очень близкие друг другу значения длины волны и отличаются фазовыми соотношениями.  [c.35]

Колебания диффузного объекта можно также исследовать методом опорной волны [5, 207]. В этом случае объект освещают светом лазера и наблюдают спекл-структуру, наводя объектив на объект. При помощи полупрозрачного зеркала на эту спекл-структуру накладывают однородный когерентный фон, используя свет того же лазера. При этом любые продольные смещения диффузной поверхности или изменения ее  [c.113]

Выходное излучение газового лазера содержит дополнительные компоненты шума, которые увеличивают шумовую мощность на выходе по сравнению с идеальным значением, соответствующим выражению (9.7). Величина этих компонент зависит от типа газового лазера (на возбужденных или ионизированных атомах), методов возбуждения (постоянный гок, ВЧ-разряд или комбинация постоянного тока и ВЧ-разряда), превышения мощности возбуждения над пороговой и т. д. Например, возможны плазменные шумы, вызванные флуктуациями постоянного тока в плазме. Могут существовать шумы, характер которых совпадает с характером избыточного фотонного шума. Конкуренция между двумя нижними энергетическими уровнями при одном и том же инвертированном верхнем уровне, приводящая к когерентному излучению более чем на одной длине волны, также может быть причиной появления шумов. Возможна и интерференция мод, особенно в длинных лазерах, где одновременно генерируется большое число осевых типов колебаний. Кроме того, шумы от источников питания (в ионных лазерах) вызывают пульсирующие токи в плазме (или индуцированные в плазме магнитным полем  [c.460]

В современной демонстрационной модификации опыта Юнга в качестве источника света используют лазер. Прн этом для когерентного возбуждения вторичных источников 5 и необходимость во вспомогательном отверстии 5 отпадает, так как в лазерном излучении световые колебания когерентны по всему поперечному сечению пучка (высокая пространственная когерентность лазерного излучения), и щели вводят непосредственно в пучок лазерного излучения.  [c.208]

В демонстрационных опытах с использованием лазерного излучения необходимость в коллиматоре и объективе отпадает. Щель вводят непосредственно в пучок. Световые колебания когерентны по всему поперечному сечению лазерного пучка. Это значит, что в отношении когерентных свойств излучения лазер можно рассматривать как удаленный точечный источник. На экране, удаленном от щели на расстояние порядка 10 м, наблюдается фраунгоферова дифракционная картина пятно размывается в перпендикулярную щели длинную полоску с постепенно спадающей к краям освещенностью, прорезанную эквидистантными темными минимумами. Ширина центрального максимума вдвое больше, чем боковых.  [c.285]

Используя вынужденное комбинационное рассеяние на молекулярных колебаниях (см. ч. I, 4.2), можно получить интенсивное когерентное излучение, волновое число которого отличается от волнового числа возбуждающего лазера на фиксированные положительные или  [c.37]

ЛАЗЕРНАЯ СВАРКА, сварка когерентным световым лучом — сварка плавлением, при которой нагрев металла осуществляется когерентным световым лучом (см. Когерентные колебания), создаваемым оптическим квантовым генератором (лазером). Этот генератор, преобразующий энергию, запасенную в  [c.71]

Идеальный когерентный источник излучает свет строго одной частоты. Реальный лазер излучает спектр колебаний— спектральную линию, в которой присутствуют несколько частот. Ширина спектральной линии связана с понятием временной когерентности и в конечном счете определяет допустимую глубину голографируемой сцены, т. е. максимальную разность хода / между объектным и опорным пучками, допустимую без уменьшения контраста интерференционной картины 1=к / к.  [c.35]

Голографические методы контроля. Методы основаны на интерференции световых волн. Источником световых волн являются оптические квантовые генераторы, позволяющие получать свет с определенной длиной волны (монохроматические волны) и в определенной фазе колебаний (когерентные волны). Использование лазеров (лазерных диодов) позволяет восстанавливать мнимое объемное изображение объекта в целом либо части этого объекта. Фиксируя на детекторе (фотопластинке или экранр монитора) наложенные изображения состояния объектов (например, без нагрузки и под нагрузкой), получают интерференционные картины, которые являются источником информации о наличии дефектов в объектах контроля. При этом интерференционные картины весьма чувствительны к незначительным перемещениям частей поверхности, которые появляются в области концентрации напряжений объекта контроля вследствие наличия в нем дефекта. Метод, основанный на голографический интерференции световых волн, применяется в основном для анализа напряженно-деформированно-го состояния сварных соединений и контроля за остаточными сварочными напряжениями.  [c.211]


Излучение лазера происходит на строго фиксированной частоте v, которая, однако, подвержена незначительным изменениям на величину Av за счет флуктуаций процесса излучения. Отрезок времени At, в течение которого это изменение не сменится другим, принято называть временной когерентностью. За время меньше At лазер генерирует практически монохроматическое излучение с постоянной фазой колебаний. Расстояние, которое проходит излучаемая ОКГ последовательность волн (цуг) за это время L = = сА1 (с — скорость света), принято называть длиной когерентности. Для большинства серийных многомодовых ОКГ L sO,l. .. 0,5 м. Для лучших одномодовых ОКГ L л 10ч- 100 м.  [c.52]

Важным свойством излучения лазера является его когерентность, под которой понимают корреляцию (согласованность) фаз колебаний, рассматриваемых в разных точках пространства в разные моменты времени. В соответствии с этим различают пространственную и срсменную когерентность. Приведем два примера.  [c.338]

Поток излучения, как и всякий поток энергии, тоже характеризуется оиределеииой степенью беспорядка (разные частоты и другие характеристики колебаний частей спектра). Только монохроматическое когерентное излучение (например, лазера) полностью упорядочено и (как и работа) характеризуется нулевой энтропией.  [c.152]

Принципиальное значение для Н. о. имело создание лазеров с модулиров. добротностью (1962), позволяющих иолучать при длительности импульсов 10 — 10 с интенсивности 10 —10 Вт/см . Сильные поля лазеров с модулиров. добротностью позволили начать исследования нелинейных эффектов, кубичных по полю, определяемых х - С помощью этих лазеров получены 3-я и 4-я оптич. гармоники (1963—64), обнаружено явление вынужденного комбинац. рассеяния (1962). Оказалось, что в сильных лазерных полях взаимодействия электронных и колебат. движений в молекулах и кристаллах приводят к фазиронке колебаний рассеяние становится когерентным, интенсивность рассеянного света возрастает на много порядков.  [c.293]

Пример Н. ф. п. — возникновение лазерной генерации. С термодинамич. точки зрения лазер представляет собой неравновесную систему, т. к. она включает в себя атомы и ноле, к-рые связаны с резервуарами, имеющими раал. темп-ры. При слабой накачке активные атомы излучают независимо друг от друга. С увеличением накачки лазер переходит в когерентное состояние, в к-ром все атомы излучают в фазе. При этом обнаруживается аналогия с фазовыми переходами 2-го рода. Подобная аналогия имеет место при Н. ф. п. и в др. системах физических (образование конвективных ячеек Бенара возникновение осцилляций напряжённости алектрич. поля в диоде Ганна), химических (появление автоколебаний и автоволн при хим. реакциях), биологических (переход в режим ритмич. активности нейтронных ансамблей образование неоднородных структур ври морфогенезе) и т. д. Рассмотрение этих явлений в рамках единого подхода, использующего Ландау теорию фазовых переходов и теорию нелинейных колебаний и волн, составляет основу синергетики.  [c.329]

Переход П. т. т. в результате неустойчивости в состояние диссипативной пространственно-временной структуры может быть описан на языке неравновесного фазового перехода. Как правило, с изменением уровня возбуждения П. т. т. испытывает неск. неравновесных фазовых переходов, в результате к-рых одни диссипативные структуры заменяются другими. Примерами этих структур являются колебания концентрации носителей и (или) Т. Часто эти колебания сопровождаются изменением тока, проходящего через П. т. т. (в случае токовых неустойчивостей), так что П. т. т. в сочетании с внеш. электрич. цепью выступает как генератор электрич. колебаний. Др. примером служит инм-екционный лазер, где в результате инжекции электронов и дырок создаётся бинолярная плазма высокой плотности с инвертиров. заполнением электронных состояний в зоне проводимости по отношению к валентной зоне. Возникновение когерентного эл.-магн. излучения может быть описано как неравновесный фазовый переход.  [c.604]

В Р. у. оптич. и частично СВЧ-диапазонов используются квантовые генераторы и усилители (см. Лазер). Для модуляции интенсивности оптич. излучения (когерентного или некогерентного) разработаны простые электронно-оптич. модуляторы. Нестабильность частоты колебаний квантовых генераторов за счёт слабости взаимодействия микрочастиц чрезвы чайно мала (порядка —10" ). В качестве капала связи в оптич, диапазоне широко применяются волоконно-оптич. кабели из спец, стекловолокна или др. диэлектрика с чрезвычайно широкой полосой пропускания частот (до 10 ГГц/км) и слабым затуханием энергии света (5 дБ/км и менее).  [c.227]

Конечная продолжительность излучения атомом отдельного волнового цуга света означает, что он не может быть бесконечно длинным (мы проанализируем это более подробно в разд. 4.6). В результате он занимает некоторую (хотя и узкую) область частот, т.е. имеет полосу частот . Даже свет лазера обладает конечной полосой частот, хотя и предельно узкой, с соответствующей длиной цугов в несколько десятков километров. В типичных нелазерных источниках, называемых обычно тепловыми источниками, тепловые колебания излучающих атомов наряду с другими эффектами ухудшают когерентность света и ограничивают время, в течение которого волновой цуг можно рассматривать как аппроксимацию простого гармонического колебания. По этим причинам монохроматический свет от таких источников, как газоразрядные трубки, более правильно называть квазимонохрома-тическим. Белый свет является полной противоположностью лазерному и имеет столь короткие волновые цуги, что его нельзя отождествить ни с одной определенной частотой.  [c.15]

ОКУ) и другие элементы, назначение которых очевидно из их наименований. Штрихованные соединения между блоками соответствуют световым связям блоки, обведенные штриховыми линиями, включаются в зависимости от используемых методов модуляции (внутренней или внешней) и приема (прямое детектирование или супергетеродикное). Особенностями системы являются прежде всего диапазон рабочих длин волн и когерентность излучения. Эти особенности приводят к необходимости создания устройств точного нацеливания антенн передатчика и приемника, так как диаграммы направленности их могут определяться значениями нескольких дуговых секунд (при малых весах и габаритах антенных систем). Случай широкой диаграммы направленности антенны передатчика имеет место, когда сигнал ОКГ является сложным и состоит из большого числа типов колебаний (мод). Однако, даже если лазер передатчика работает на одном типе колебаний, часто необходимо иметь широкий луч, хотя бы для успешного решения задачи нацеливания (перехвата) и слежения за связным ретранслятором 1). В то же время узкие диаграммы направленности позволяют реализовать существенно большие дальности связи, однако и здесь возникают свои проблемы, связанные с обзором больших объемов пространства узкими лучами за короткие интервалы времени, и проблемы стабилизации направления луча. Создание прецизионных быстродействующих устройств нацеливания узких лучей, обеспечение одномодового режима работы ОКГ, разработка точных устройств сопровождения позволят полностью реализовать экстремальные характеристики направленности лазерных систем. В этом случае сечение луча может приблизительно совпадать с поверхностью апертуры приемной системы, поверхностью ретранслятора или цели кроме того, случай полного перекрытия целью сечения луча имеет место при посадке объекта на земную или лунную поверхность.  [c.17]

На рис. 3.56 кривые соответствуют реальному лазеру, т. е. Sr= 0, и естественная спонтанная эмиссия добавляется к когерентному излучению. При сравнении кривых по отношению сигнал/шум видно, что частота ошибок на рис. 3.56 снижается при одинаковых значениях s. Это объясняется тем, что составляющая естественной спонтанной радиации также модулируется вместе с когерентной составляющей. Из кривых также видно, что вероятность ошибки сильно зависит от абсолютного уровня сигнала и от отношения сигнал/шум, что исключено для случая классического обнаружения (например, при обнаружении синусоидального колебания в гауссовских шумах). В классических системах (не квантовых) вероятность ошибки зависит только от отношения сигнал/шум. При большом абсолютном уровне сигнала согласно физическому прин-128  [c.128]


Рис. 3.22. Стационарная когерентная спектроскопия комбинационного рассеяния. Источники излучения работают в непрерывном режиме. В процессе эксперимента варьируется частота одного из лазеров накачки. Измеряется нитенсивность антистоксова излучения как функция разности частот oj—СО2 бигармо-нической накачки — собственная частота молекулярных колебаний среды) Рис. 3.22. Стационарная когерентная <a href="/info/38740">спектроскопия комбинационного рассеяния</a>. <a href="/info/127375">Источники излучения</a> работают в непрерывном режиме. В процессе эксперимента варьируется частота одного из <a href="/info/144264">лазеров накачки</a>. Измеряется нитенсивность <a href="/info/249853">антистоксова излучения</a> как функция разности частот oj—СО2 бигармо-нической накачки — <a href="/info/6468">собственная частота</a> <a href="/info/249784">молекулярных колебаний</a> среды)
В схемах голографирования применяют затворы различных конструкций, позволяющие перекрыть пучок света лазера на время установки фотопластинки и выдерживания ее с целью полного гашения возникших при этой операции вибраций до момента экспонирования. Затвор приводится в действие вручную или от устройства, задающего длительность экспозиции, и должен работать плавно, не вызывая акустических и механических колебаний и турбулентных воздушных потоков на пути освещающего пучка, нарушающих его когерентность. При мощности лазера более 100 мВт затвор следует ставить после точечной диафрагмы. В противном случае в процессе экспонирования диафрагма постепенно нагревается, изменяет свои размеры и деформируется, также нарушая когерентность и гомоцентричность пучка, что приводит к возникновению паразитных интерференционных картин, либо голограмма не регистрируется совсем.  [c.94]

Мощные лазеры по указа нной выше причине обычно излучают большое число статистически независимых гармошических колебаний. Такой многомодовый характер излучения связан с многомо-довостью спектра собственных колебаний оптического резонатора. В общем случае фазы отдельных мод случайны, так что случайным оказывается и все суммарное излучение. Естественно, что при этом нарушается синфазность электромагнитного излучения с торца лазера или иными словами разрушается как пространственная, так и временная его когерентность.  [c.10]

При использовании одномодовых лазеров без частотной селекции типов колебаний (Л Г-36, Л Г-38) следует учитывать, что длина когерентности их излучения не превосходит 20 см. Интерферометрические исследования можно проводить и с помощью многомодовых нестабилизированных лазеров (ЛГ-34, Л Г-35, ЛГ-126, генерирующих излучение с длинами волн 0,63 и 1,15 мкм, и ЛГ-75), но при условии согласования волновых фронтов и компенсации длин оптических путей измерительного и опорного пучков.  [c.180]

Известные методы лазерного зондирования на основе нелинейных и когерентных эффектов можно объединить в три группы [31]. К первой отнесем лидарные методы, использующие оптическое и радиоизлучения при дистанционном лазерном нагреве и ионизации аэрозольной атмосферы ко второй — методы детектирования сверхслабых спектральных искажений эхосигналов на основе нелинейного усиления влияния атмосферы, включенной в резонатор лазера к третьей — методы нелинейной и когерентной спектроскопии комбинационного рассеяния света на колебательновращательных переходах молекул газовой среды и резонансных колебаниях формы частиц аэрозолей, а также их ориентации полем.  [c.189]

Интересными возможностями по измерению широкого набора малых газовых примесей обладает когерентный ЛП-лидар с дискретно перестраиваемыми по 70 переходам Р и R-ветвей лазером на СО2, в полосу генерации которого попадают линии поглош,ения более 30 газов и паров веществ, таких как NH3, СН4, С2Н6, О3, СО2, NO2, Н2О и др. Перестройка частоты излучения осуществлялась с помощью дифракционного ответвителя, в направлении первого порядка дифракции которого устанавливалось на пьезокерамике плоское зеркало. Программно-управляемыми колебаниями угла поворота и осевого смещения плоского зеркала достигались соответственно перестройка генерации по лазерным переходам и частотная модуляция в пределах каждого отдельно взятого перехода. Последнее обстоятельство обеспечивало эффект гетеродинных биений на разностной частоте опорного и рассеянного полей в случае внешнего отражения от неподвижного зеркала или топографического объекта. Достигнутая энергетическая чувствительность ЛП-лидара к когерентному внешнему сигналу составила примерно 10- 2 Вт-Гц /2 что в среднем на порядок величины превышает чувствительность внерезонаторного гетеродинного приема. Дополнительный выигрыш в спектральной чувствительности, как уже отмечалось, может быть достигнут при использовании одновременной генерации на двух конкурирующих переходах, что иллюстрируется рис. 6.9 [48].  [c.220]

Анализ коррелящюнных функций стал предметом современной радиометрии, значительное развитие которой за последние 20 лет связано с космическими программами, где необходимы точные радиометрические измерения. В то время как классическая радиометрия основывалась главным образом на измерении средней спектральной плотности излученной энергии, эксперименты по измерению когерентности первого и второго порядка (разд. 1.8) открыли новые перспективы, связанные с разработкой систем, в которых используются лазеры. В настоящее время мы находимся на той стадии, когда радиометрия вовлекает в себя квантовую теорию когерентности. Это основано на развивающемся начиная с 1963 г. (работы Глаубера [35] и Сударшана [36]) квантовостатистическом описании полей излучения. Глаубер ввел в квантовую электродинамику так называемые когерентные состояния поля, переходящие при обращении в нуль постоянной Планка (что соответствует большому числу фотонов в поле) в классические синусоидальные колебания вектора поля с данной амплитудой и фазой, которые записываются в виде (г, /) = оехр( /к г)ехр(/(оЛ). Полезным аналитическим методом статистического описания квантованного поля является Р-представление, которое в классическом пределе соответствует распределению плотности вероятности для ком-  [c.320]

Используя принцип соответствия, можно более прямо показать возникновение этого свойства когерентно излучаемых лучей. Мы упростим нашу картину лазера, рассматривая его как распределение осциллирующего заряда, который излучает наподобие антенны. Заряд, по нашему предположению, имеет только один тип колебания, амплитуда которого такая же, как у гармонического осциллятора. Поскольку электрическая поляризация этого осциллятора является макроскопической, то мы должны рассматривать координату осциллятора как существенно классическую величину, т. е. считать, что осциллятор находится в сильно возбужденном квантовом состоянии, которое имеет чрезвычайно большой квантовый номер.  [c.159]


Смотреть страницы где упоминается термин Лазеры когерентные колебания : [c.168]    [c.178]    [c.396]    [c.239]    [c.464]    [c.290]    [c.51]   
Смотреть главы в:

Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах  -> Лазеры когерентные колебания

Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах  -> Лазеры когерентные колебания



ПОИСК



Когерентная (-ое)

Когерентность

Когерентные колебания

Лазер

ОГС-лазеров в ДГС-лазерах



© 2025 Mash-xxl.info Реклама на сайте