Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура при кристаллизации

Стокса уравнение 303 Структура при кристаллизации  [c.555]

Наиболее важным этапом формирования литой структуры при кристаллизации является графитизация.  [c.147]

ИССЛЕДОВАНИЕ ОБРАЗОВАНИЯ АНОМАЛЬНЫХ СТРУКТУР ПРИ КРИСТАЛЛИЗАЦИИ СЕРОГО ЧУГУНА  [c.96]

Рис, 99. Кривая охлаждения и схема структур а —сплава, дающего при кристаллизации твердый раствор с последующим выделе (исм вторичной фазы б — доэвтектического сплава  [c.127]


По окончании кристаллизации сплав с 4,3% С имеет чисто эвтектическую структуру. При охлаждении этого сплава от 1147 до 727°С (от точки / до точки 2) из аустенита, входящего в состав эвтектики, выделяется цементит, который обычно структурно не обнаруживается, так как объединяется с цементитом эвтектического происхождения.  [c.178]

Как известно, металлы имеют кристаллическую структуру. При затвердевании металла в расплаве одновременно возникает много центров кристаллизации, вследствие чего рост каждого кристалла стеснен соседними. В результате технический металл состоит из большого числа кристаллов неправильной огранки, называемых кристаллитами или кристаллическими зернами. Относительно друг друга кристаллические зерна ориентированы самым различным образом. Вместе с тем в каждом из них атомы расположены совершенно определенно и образуют так называемую кристаллическую решетку, состоящую из повторяющихся одинаковых ячеек.  [c.104]

При малом Ь,т = 0 и Со -> О, т. е. при кристаллизации почти чистых металлов в отсутствие концентрационного переохлаждения происходит плоская кристаллизация. Криволинейные очертания межфазной границы в сварочной ванне сглаживаются, так как выступающие зоны попадают в область более высоких температур и скорость их кристаллизации уменьшается. Структура получается столбчатой. Такой тип структуры существует вблизи зоны сплавления, так как здесь концентрационное переохлаждение равно нулю.  [c.454]

Из рисунка видно, что при кристаллизации металлов с малым содержанием примесей в случае больших значений Ф в шве образуется ячеистая структура. При Ячеисто- сварке сплавов в зоне сплавления  [c.454]

Большое влияние оказывает характер структуры, образующейся при кристаллизации. Благоприятной, например, считается дендритная равноосная. Для ее получения прибегают к модифицированию сварных щвов редкоземельными, тугоплавкими или поверхностно-активными элементами. Нередко применяют также различные способы внешнего воздействия на кристаллизующийся металл шва — электромагнитное и ультразвуковое перемешивание, механические колебания ванны в процессе кристаллизации и др. Для создания условий, способствующих переходу от плоской схемы кристаллизации к объемной, иногда прибегают к введению в сварочную ванну дополнительного холодного металла в виде проволоки или металлической крупки того же состава, что и свариваемый металл. Введение охлаждающей присадки создает в ванне зону термического переохлаждения и способствует получению объемной схемы кристаллизации.  [c.488]


Высокая прочность межатомной связи в кристаллах твердого раствора и второй выделяющейся фазы является необходимым условием высокого температурного уровня структурного разупрочнения сплава. Взаимодействие между обеими фазами также является важным фактором, влияющим на процесс коагуляции выделяющейся фазы, т.е. на процесс разупрочнения сплава при высоких температурах. Следовательно, при создании высокожаропрочных сплавов надо иметь в виду не только свойства кристаллов основного твердого раствора и выделяющейся фазы, но и термодинамические условия взаимодействия между ними. Важное значение для повышения жаропрочности сплавов имеет литая гетерогенная структура, возникающая при кристаллизации отливки в виде скелета или сетки. Существенным при этом является высокая термическая стабильность избыточной фазы в сплаве.  [c.48]

В зависимости от интенсивности отвода тепла при кристаллизации в литейных формах структура литых отливок может быть равноосной, направленной, монокристаллической, формируемой из дендритов с кристаллографической ориентацией (001).  [c.416]

Равноосная структура. Равноосная структура формируется при кристаллизации отливки в литейных песчаных формах с малой интенсивностью охлаждения. Характерным примером является затвердевание сплава (для изготовления лопатки) в керамических формах с огнеупорными наполнителями (шамотом, кварцем и др., см. рис. 104, в).  [c.416]

Роль затравки при кристаллизации жидкого гетерогенного расплава заключается в том, что, во-первых, зарождение дендритных структур и расположение их параллельными рядами должно происходить вдоль плоскости (001) и, во-вторых, необходимо создать условия теплоотвода в стартовой зоне, обеспечивающей определенную скорость кристаллизации. Схема процесса затвердевания жаропрочного сплава лопатки с монокристаллической структурой показана на рис. 212.  [c.427]

С) в стартовой зоне лопатки формируются центральные и боковые дендриты, количество их может составлять пять, семь и более (см. рис. 212), При перегреве до температуры 1750°С и выдержке в течение определенного времени (г) сокращается количество тугоплавких соединений (оксидов и карбидов). В процессе кристаллизации тугоплавкие оксиды группируются параллельными рядами по оси лопатки и таким образом создают границы фронта кристаллизации. Чем больше скорость кристаллизации, тем менее упорядочен рост дендритной структуры. При высокотемпературной (1280°С) термообработке они приобретают более упорядоченный характер.  [c.428]

Если сплав со столбчатой структурой подвергнуть обработке в магнитном поле, т. е. получить анизотропию частиц выделения, то можно еще повысить магнитную энергию. Рекордная магнитная энергия получена на монокристалле и равна 48-10 дж/м (12,0-10 гс. э), В сплавах системы Fe—Ni—А1—Со коэрцитивная сила повышается при легировании этих сплавов титаном. Влияние титана на повышение коэрцитивной силы связано с измельчением зерна. В сплавах, содержащих титан, затруднено получение столбчатой структуры, следовательно, магнитная энергия их не высока. Однако специальным легированием сплавов, содержащих титан, можно добиться получения столбчатых кристаллов при кристаллизации. У таких сплавов наряду с высокой коэрцитивной силой достигается большая магнитная энергия.  [c.225]

Заливка расплава чугуна с 3,5% С и 2% Si в металлическую форму и последующее приложение механического давления до 50—60 MH/м приводят к тому, что более 70% включений графита при кристаллизации приобретают округлую форму, а 30% сохраняют прежнюю пластинчатую форму [49]. При давлении 150 МН/м графитизация чугуна почти полностью прекращается, отливки имеют белый излом. При атмосферном же давлении у чугуна указанного состава графит пластинчатый, при литье в кокиль — междендритный, при литье в песчаную форму — неориентированный. Кратковременный отжиг при температуре 900—950°С закристаллизованных под давлением образцов чугуна приводит к феррит-ной структуре металлической матрицы и округлой форме графита.  [c.37]


Влияние перегрева и температуры заливки на структуру заготовок при обычных условиях литья общеизвестно с увеличением перегрева увеличивается протяженность зоны столбчатых кристаллов и укрупняются зерна в центральных зонах слитка [41]. Эта зависимость сохраняется и при кристаллизации под поршневым давлением.  [c.108]

Отрицательное влияние на прочность повышенного количества а-твердого раствора в структуре сплава при кристаллизации под давлением перекрывается повышением прочности эвтектики. Наблюдаемое повышение пластичности связано как с увеличением количества а-твердого раствора, так и измельчением частиц кремния.  [c.121]

У деталей, подвергающихся механической обработке, ослабление на З частках переходов наступает в результате перерезания волокон, полученных при предшествующей горячей обработке заготовки давлением. У литых деталей участки переходов, как правило, ослаблены литейными дефектами, вызванными нарушениями структуры при кристаллизации металла и охлаждении отливки. В этих участках обычно сосредоточиваются рыхлоты, пористость, микротрещниы и возникают внутренние напряжения. У кованых и штампованных деталей участки переходов имеют пониженизю прочность вследствие вытяжки металла на этих участках.  [c.296]

Р.И. Минц и др. [10J использовали этот метод для анализа фрактальных структур при кристаллизации жидкости на подложке. Определенная указанным методом фрактальная размерность для различных систем укладывалась в интервале 1 < D i 2. Обнаружен скачок D при К=Ккр, причем он был тем резче, чем больше R p. Отмечено, что критический размер фрактала отвечает про-  [c.87]

Модифицирование. Модифицированием расплавов называется изменение структуры при кристаллизации отливки, достигаемое путем введения в сплав специальных добавок или в результате создания специальных условий плавки и обработки расплава. Модифицирование расплава, как правило, проводят в зак 1Ючнтельной стадии при плавке металлов. Специальные модифицирующие добавки вводят в сплав или же подвергают его температурно-временной обработке, заключающейся в перегреве с последующим быстрым охлаждением до температуры разливки. Наложение на кристаллизующийся расплав механических или ультразвуковых колебаний также приводит к измельчению макрозерна отливки.  [c.276]

Предел прочности (а ) и относительное удлинение (S) ковкого чугуна зависят от толщины стенки отливки. Погрубение структуры при кристаллизации, в связи с уменьшением скорости охлаждения, приводит к получению больших по величине включений углерода отжига, что вызывает уменьшение прочности и пластичности чугуна. Влияние диаметра литых образцов на изменение прочности и пластичности чугуна показано в табл. И и на  [c.120]

Движ щей силой образования диссипативных структур в физикохимических системах, юг т быть градиенты температур, давлений, химических или электрохимических потенциалов, внешних электрических и магнитных полей. Например, когда начинается процесс кристаллизации в переохлажденном расплаве на зародыше, то энергия системы изменяется в двух противоположных направленттях увеличивается за счет образования новой поверхности раздела, т е. за счет поверхностного натяжения, и уменьшается за счет вьщеления теплоты кристаллизации. Оба эти працесса нелинейны, и если их характеристические времена оказываются близкими друг к другу, то возникают благоприятные условия для взаимосогласованного поведения частей системы и образования в ней упорядоченных диссипативных структур при кристаллизации  [c.167]

Проблема защиты от катастрофического понижения прочности металлов под действием жидких металлических компонентов приобретает исключительное значение в современной технике. Так, примеси поверхностно-актпвных металлов — адсорбционных модификаторов, измельчающих структуру при кристаллизации сплавов и вследствие этого повышающих их механические свойства при обычных температурах, — способны резко понизить прочность сплава в условиях высоких температур. Поэтому решение задачи повышения жаропрочности тесно-связано с необходимостью устранения таких примесей как из самого сплава, так и из защитных покрытий. Б последнее десятилетие расплавленные металлы начинают использоваться, как жидкие теплоносители в теплообменных установках, например в атомных реакторах, где эти расплавы также могут приводить к серьезному понижению прочности омываемых ими металлических конструкций [81].  [c.142]

На KpuBoii охлаждения при кристаллизации эвтектики (ледебурита) отмечается площадка (рис. 76). Доэвтектнческие сплавы после затвердевания имеют структуру аустеинт + ледебурит (А + h F e , ) (см. рис. 78). Эвтектический силав (4,3 % С) затвердевает при иостояииой температуре с образованием только эвтектики ледебурита (рис. 76).  [c.123]

Р ассмотрим направленную кристаллизацию, которая происходит при постоянном направлении отвода теплоты и определенном градиенте температур в жидкой и твердой фазах. Распределение температуры у межфазной поверхности определяется соотношением градиентов температуры в жидкой и твердой фазах, а также выделением при кристаллизации скрытой теплоты плавления. В результате ее выделения температурные градиенты снижаются в области жидкой фазы и возрастают в твердой. Характер распределения температуры у межфазной поверхности определяет ее микрорельеф, а следовательно, и структуру металла, формирующуюся в процессе кристаллизации.  [c.441]


Концентрационное уплотнение, вызывая ячеистую кристаллизацию, одновременно приводит и к появлению ячеистой ликвации, которая может быть весьма значительной (концентрация примесей может измениться в 10 раз и более). Особенно сильно явление ликвации выражено в случае ячеисто-дендритных и дендрит- ,23, хема образования НЫХ структур при продвижении фрон- еждендритной химической нега кристаллизации в направлении за- однородности  [c.465]

Фазовый переход второго рода приводит к возникновению в неравновесной кристаллиз>тощейся системе след тощего масштабного уровня иерархической самоорганизации структуры. Каждый масштабный уровень организации иерархической структуры имеет свои "элементарные кирпичики", которые являются конечными структура.ми предыдущего уровня. Поскольку при кристаллизации происходит процесс уплотнения вещества, назовем Элементарные кирпичики для всех структурных уровней элементами уплотнения. Это означает, что на начальном этапе строительства какого-либо масштабного уровня система строит из элементов уплотнения структуру, более плотную по сравнению со структурой предыдущего уфовня.  [c.89]

Таким образом, природа процесса образования поликристаплических сплавов при кристаллизации из расплава такова, что в структуре сплавов изначально закладываются элементы, являющиеся "зародышами разрушения" твердого тела, то есть области скопления различных дефектов кристаллической структуры.  [c.98]

В чем заключается основная идея фуллеренной модели формирования структуры железо-углеродистых сплавов при кристаллизации  [c.159]

Фазовый переход второго рода приводит к возникновению в неравновесной кристаллизующейся системе следующего масштабного уровня иерархической самоорганизации стру[оуры. Каждый масштабный уровень организации иерархической структуры имеет свои "элементарные кирпичики, которые являются конечными структурами предыдущего уровня. Поскольку при кристаллизации происходит процесс уплотнения вещества, назовем эле-  [c.132]

При кристаллизации отливок структура может быть частично гетерогенной, что подтверждается дендритообразным строением металла в литом состоянии и после термической обработки. Гетерогенная структура ухудшает механические свойства отливки.  [c.363]

Чтобы уменьщить склонность сварного шва к образованию горячих трещин, необходимо прежде всего управлять металлургическими реакциями с участием расплавленного металла для устранения неблагоприятного влияния серы, которая образует на кромках кристаллов тонкие сульфидные пленки. По данным пленкам обычно происходит разрушение при кристаллизации и остывании металла. Форму, структуру сульфидов и склонность металла к образованию горячих трещин можно регулировать с помощью отношения  [c.59]

Смесь двух фаз (или более), одновременно или попеременно кристаллизующихся из жидкой фазы при постоянной температуре, называется эвтектикой. Число степеней свободы при кристаллизации эвтектики равно нулю (с = 2 — 3+1=0). Это свидетельствует о том, что ни один из факторов равновесия (температура, концентрация) не может быть изменен без нарушения числа фаз системы. Поэтому на кривой охлаждения наблюдается горизонтальный участок (/—/ ). Температура, при которой возникает эвтектика, называется эвтектической, а состав сплава, соответствующий точке С — звшешичесшм. Изотермический процесс кристаллизации эвтектики свидетельствует о выделении теплоты кристаллизации. Таким образом, эвтектическая структура в рассматриваемой  [c.98]

В книге рассмотрены влияние давления на критические точки некоторых металлов и сплавов, фазовые равновесия и параметры кристаллизации, а также газоусадочные процессы в сплавах и литых заготовках. Показаны особенности затвердевания, протекания усадочных процессов, формирования структуры и свойств металлов и сплавов в слитках и отливках при кристаллизации под всесторонним газовым и механическим давлением.  [c.2]

Закономерности в формировании структуры слитков из латуни ЛМцА57-3-1 при кристаллизации под поршневым давлением справедливы и для других металлов и сплавов.  [c.112]

Сплав А1—12% Si, стали 45Л и У12Л в обычных условиях литья имеют минимальную ширину столбчатой зоны, а при кристаллизации под механическим давлением транскристаллическую по всему сечению. По мере снижения температурного градиента, осуществляемого за счет повышения начальной температуры прессформы, уменьшается протяженность столбчатой зоны и расширяется зона равноосных кристаллов. При этом у сплава с широким интервалом кристаллизации равноосная структура образуется при меньшей температуре нагрева прессформы, что находится в полном соответствии с современной теорией кристаллизации, согласно которой они более склонны к образованию равноосной структуры при большем температурном градиенте, чем сплавы с узким интервалом кристаллизации. Слитки из сталей  [c.113]

Некоторые из новых литейных сплавов на основе алюминия испытывают в условиях кристаллизации под поршневым давлением. Одним из таких сплавов является сплав АЛЗМ, содержащий 3,0—3,67о Si 0,15— 0,30% Mg 3,5—4,5,%i Си 0,05—0,30% Ti, остальное алюминий. Из этого сплава изготовляли слитки (Д = = 96 мм) при кристаллизации под поршневым давлением 340 МН/м [5]. Установлено, что условия кристаллизации оказывают большое влияние на структуру слитков. При литье в сухую песчаную форму и кристаллизации под атмосферным давлением наблюдается крупнозернистая структура твердого раствора с грубыми выделениями эвтектики по границам зерен, а в процессе кристаллизации под поршневым давлением в металлической прессформе измельчение зерен твердого раствора и включений избыточных фаз.  [c.122]


Смотреть страницы где упоминается термин Структура при кристаллизации : [c.16]    [c.242]    [c.204]    [c.85]    [c.415]    [c.10]    [c.56]    [c.17]    [c.44]   
Теория сварочных процессов (1988) -- [ c.0 ]



ПОИСК



175 - Кристаллизация ванны 177, 178 Определение 174 - Послесварочная обработка 181 - Свариваемость 176 - Свойства 175 - Схема определения структуры

Взаимосвязь первичной кристаллизации металла с его химической неоднородностью и формированием структуры металла сварных швов (аналитический обзор литературы)

Влияние сверхбыстрой кристаллизации на структуру и свойства металлов и сплавов

Влияние химического состава и условий кристаллизации металла шва на его химическую микронеоднородность и формирование структуры

Кристаллизация

Кристаллизация — Влияние: внешнего магнитного поля 46—48, 443, 444 ультразвуковой обработки 476, 477 постоянного кристаллическбй структуры 34, 35 — Перераспределение примесей 32 — 34 — Рост

Особенности кристаллизации и формирования первичной структуры металла шва

Особенности первичной кристаллизации и формирование структуры сварного шва

ПРОСТЫЕ МЕТАЛЛЫ (КРИСТАЛЛИЗАЦИЯ И СТРУКТУРА) Затвердевание и строение литого металла

Процесс затвердевания, кристаллизация и структура сплавов системы РЬ

Процесс кристаллизации и структура сплавов

Процессы кристаллизации и технологическая прочность Образование первичной структуры и формирование металла сварного шва

См. также Структуры направленной кристаллизации

См. также Структуры направленной кристаллизации дислокационные сетки

См. также Структуры направленной кристаллизации кристаллография поверхности

См. также Структуры направленной кристаллизации механические характеристик

См. также Структуры направленной кристаллизации огрубление структуры

См. также Структуры направленной кристаллизации раздела

См. также Структуры направленной кристаллизации связи

Структура и свойства сварных соединений углеродистых и легированных сталей Кристаллизация наплавленного металла сварных соединений углеродистых и низколегированных перлитных сталей

Структура при кристаллизации дентритная

Структура при кристаллизации первичная

Структура при кристаллизации полиэдрическая

Структура при кристаллизации столбчатая

Структура при кристаллизации схватыванием

Структура при кристаллизации ячеистая

Теория формирования структуры и свойств чугуна при плавлении и кристаллизации

ФОРМИРОВАНИЕ СТРУКТУРЫ МЕТАЛЛОВ ПРИ ПЕРВИЧНОЙ КРИСТАЛЛИЗАЦИИ

Федорова, О. Г. Сидоренко. Исследование образования аномальных структур при кристаллизации серого чугуна

Формироание структуры сплавов при кристаллизации

Формирование структуры металла при кристаллизаГомогенная (самопроизвольная) кристаллизация

Формирование структуры металла при кристаллизации

Формирование структуры простейших сплавов при кристаллизации

Формирование структуры сплавов при кристаллизации

Эвтектик кристаллизация, морфология структур

Эвтектик кристаллизация, морфология структур высокотемпературная

Эвтектик кристаллизация, морфология структур морфологии упрочняющей фазы

Эвтектик кристаллизация, морфология структур образование микропор

Эвтектик кристаллизация, морфология структур переохлаждение

Эвтектик кристаллизация, морфология структур природа направленной структуры



© 2025 Mash-xxl.info Реклама на сайте