Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двойник

В результате двойникования в микроструктуре металла наблюдаются характерные двойные пластинки (двойники), например у Си, Си—Zn, V—Ре и др.  [c.81]

Если целое число атомов железа не укладывается в длину окружности фуллере-на, то в структуре кластера образуется вакансия (рис. 57). При этом число вакансий будет увеличиваться от центра к периферии. Таким образом, при формировании кластера неизбежно образуются дислокации. Другого рода дислокации-двойники образуются при сопряжении кластеров.  [c.80]


Границы зерен и двойников, дефекты упаковки, межфазные границы, стенки доменов, а также поверхность кристалла представляют собой двухмерные дефекты.  [c.85]

Выше отмечалось, что дефекты упаковки, границы зерен и двойников, границы доменов, поверхность кристалла относятся к двухмерным дефектам. Рассмотрение вопросов, связанных с поверхностью и границами доменов, будет проведено в последующих главах. Здесь мы кратко остановимся на дефектах упаковки и границах зерен.  [c.112]

В случае хрупких металлических материалов или испытаний на усталость при низких температурах во внутренних объемах отожженных металлов и сплавов образуется малоразвитая дислокационная структура (рис. 20 и 21). Лишь в отдельных зернах наблюдается сильное изменение дислокационной структуры при наличии двойников деформации (рис. 21, б). Более интенсив-ТЕРЕНТЬЕВ В.Ф. ЦИКЛИЧЕСКАЯ ПРОЧНОСТЬ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ  [c.38]

При выводе формулы (6.65) для формы разрешенного р-спектра мы заранее предполагали, что масса покоя нейтрино Шу, (и его двойника — антинейтрино) равна нулю. Если бы нейтрино имело хотя и малую, но конечную массу покоя, то форма разрешенного р-спектра суш,ественно изменилась бы в окрестности При нулевой массе покоя кривая формы спектра (см., например, рис. 6.14) касается оси абсцисс (как парабола). При ненулевой массе эта кривая подходила бы к оси абсцисс иод некоторым конечным углом. Кроме того, максимальная энергия Е оказалась бы смещенной влево на энергию, соответствующую массе покоя нейтрино. Разумеется, чем меньше масса нейтрино, тем слабее проявляются эти особенности. Специальные тщательные измерения формы спектра вблизи для уже упоминавшегося нами распада трития (см. п. 1) показали,, что в пределах ошибок эксперимента = 0. Во всяком случае гПу, не может превышать 0,07% массы электрона. Ниже в п. 10 мы увидим, что существуют серьезные теоретические основания считать массу покоя нейтрино точно равной нулю.  [c.239]

Как уже отмечалось в гл. П, пластическая деформация кристаллических тел может осуществляться не только скольжением, но и двойникованием. Двойникование для кристаллов с о. ц. к., г. ц. к. и г. п. у. решетками можно наблюдать при особых условиях деформирования. При этом металлографическими способами выявляются области, иначе травящиеся, чем окружающий матричный кристалл. Отличительными признаками этих областей являются прямолинейность и строгая кристаллографическая направленность двух параллельных границ. Дифракционными (рентгеновскими и др.) методами установлено, что эти области закономерно отличаются своей ориентировкой и расположением атомов относительно матрицы. Расположение атомов внутри этой области представляет собой зеркальное отражение расположения атомов в матричном кристалле (см. рис. 77,а). Плоскости зеркального отражения, пересечение которых с плоскостью шлифа имеют вид прямолинейных границ, являются плоскостями двойникования. Так, на рис. 77,а п б плоскостью двойникования является плоскость (112). Переориентированные области называют двойниками, а процесс их образования двойникованием. Двойники в кристаллах делятся на двойники роста (рост кристалла из расплава, в процессе рекристаллизации и отжига) и деформационные двойники. Двойникование при деформации — один из механизмов сдвиговой деформации. Для деформационного двойникования характерны высокие скорости и выделение энергии в форме звука с характерным потрескиванием в процессе деформации кристалла. Двойникование сопровождается скачкообразным изменением деформирующего усилия,  [c.131]


Торцовые границы двойника, заканчивающиеся внутри зерна или на его границах, являются некогерентными.  [c.132]

Энергия когерентной границы двойников дв=0,5х Х д.у, поэтому склонность к двойникованию с уменьшением энергии дефекта упаковки увеличивается. Так, в г. ц. к. кристаллах алюминия деформационные двойники не наблюдаются, а в кристаллах меди, деформированных при 4 К и высоких напряжениях в серебре, золоте и никеле, они обнаружены для меди напряжения сдвига составляют 150, а для никеля 3 МПа. Указанные напряжения достигают при низких температурах или при больших скоростях деформации.  [c.137]

Наблюдения показывают, что зарождение двойников связано с наличием концентрации напряжений. Плохо  [c.139]

ДИСЛОКАЦИОННЫЙ МЕХАНИЗМ ДВОЙНИКОВАНИЯ. Для начала двойникования требуется более высокое напряжение, чем для скольжения, однако эти напряжения значительно ниже теоретической прочности кристалла. Поэтому механизм одновременного движения всех атомов в двойнике представляется нереальным  [c.140]

Для железа с энергией дефекта д.у 2-10 мДж/ /см уравнение (83) дает сг 0,02 G. Реальные напряжения, при которых имеет место двойникование, обычно составляют 10 G, т. е. для зарождения двойника необходима дополнительная концентрация напряжений.  [c.143]

ВЗАИМОДЕЙСТВИЕ ДВОЙНИКОВ С ДРУГИМИ ДЕФЕКТАМИ. РОЛЬ ДВОЙНИКОВАНИЯ В ПРОЦЕССЕ ПЛАСТИЧЕСКОГО ТЕЧЕНИЯ. Двойникование вызывает значительные локальные деформации в самом двойнике (см. табл. 6), в окружающей его матрице и особенно вблизи препятствий, с которыми двойник сталкивается. Эти деформации сильно влияют на характер упрочнения и разрушения металлов.  [c.145]

Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25 °С D = 1,3-10" см с) 117], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцин-кованных слоев е-латуни (сплав Zn—Си с 86 ат. % Zn) и -у-латуни (сплав Zn—Си с 65 ат. % Zn) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным.  [c.334]

Методом просречивдющей электронной микроскопии проанализирована эволюция субструктуры в сталях. Выполнен количественный статистический ацдлиз параметров субструктуры, установлены закономерности изменения характера фрагментирования структурных составляющих сталей, скалярной, избыточной и суммарной плотности дислокации э них, плотности двойников, кривизны кручения решетки.  [c.66]

Поражает как обилие элементарных частиц, так и их разнообразие. Резко различаются между собой их массы, времена жизни (напомним, что это далеко не все характеристики частиц). Почти у каждой частицы имеется ее двойник — античастица, в связи с чем их число сразу же должно быть увеличено почти вдвое. В ряде случаев част1щы имеют различные зарядовые состояния, например под символом кси-гиперона 2 скрываются две частицы — нейтральный и отрицательно заряженный кси-ми-нус-гиперон S , под символом К следует понимать две частицы — нейтральный каон и положительно заряженный АГ -ка-он. Больпше группы частиц объединены под названием резонансы . Характерным для этих частиц является их малое время жизни ( 10 с), все они рассматриваются как различные возбужденные состояния одной частицы, например нуклона. И здесь символы отдельных резонансов больше указывают на их существование, нежели на действительную картину наличия множества частиц, принадлежащих данному резонансу и отличающихся друг от друга зарядовыми состояниями, массой и временем жизни. Так, нуклонный резонанс А, открытый в 1951 г. Э. Ферми в опытах по рассеянию пионов на протонах, включает в себя следующие частицы.  [c.186]


Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Рис. 22. Двойникование в процессе усталости образцов железа при температуре испытания 77К (а, б) и схема образования микротрещины при всзрече двойника с границей зерна (в) Рис. 22. Двойникование в <a href="/info/167777">процессе усталости</a> образцов железа при <a href="/info/28878">температуре испытания</a> 77К (а, б) и <a href="/info/771132">схема образования</a> микротрещины при всзрече двойника с границей зерна (в)
Применяемые на практике металлы и сплавы представляют собой твердые растворы с упорядоченным и неупорядоченным аморфным распределениями атомов. Твердые растворы могут содержать несовершенства четырех основных типов точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные) и объемные (трехмерные). К первым относятся вакансии (свободные узлы кристаллической решетки) и межузельные (смещенные) атомы ко вторым — цепочки точечных дефектов, различные типы дислокаций к третьим — дефекты упаковки атомов, границы зерен, блоков, двойников и т. д. к четвертым дефектам относятся поры, включения, выделения, технологические трещины и тому подобные образования, размеры которых намного превосходят межатомные расстояния.  [c.321]

На рис. 1.1 изображена в логарифмическом масштабе шкала различных характерных длин в ядерной физике. Расстояниям порядка см соответствуют процессы взаимодействия v-квантов с электронами и их двойниками — позитронами (см. гл. VII, 6, а также гл. VIII, 4). Например, такие расстояния характерны для комптон-эффекта — рассеяния у"1 вантов на электронах. Между 10" и 10 см располагаются радиусы атомных ядер. Размеры примерно 10" см имеют протоны и нейтроны — частицы, из которых составлены атомные ядра. Такого же порядка размеры имеет и большинство других элементарных частиц (пионы, каоны, гипероны,. ..). Этим же расстоянием определяется радиус действия сил между протонами, нейтронами и большинством других элементарных частиц. Поэтому длина 1 ферми = 10 см является самым характерным расстоянием для всей ядерной физики. Отметим, что не все элементарные частицы имеют размеры порядка 10" см. Радиусы электронов и некоторых других частиц столь малы, что до сих пор не поддаются наблюдению.  [c.8]

Конечно, не все реакции рождения частиц возможны даже при достаточно большой кинетической энергии столкновения. Многие из них запрещены законом сохранения электрического заряда и другими законами сохранения, подробно рассматриваемыми в следующих параграфах. Несмотря на это, можно утверждать, что при достаточно высокой энергии любого столкновения возможно рождение каких угодно частиц. Например, из-за сохранения электрического и барионного (см. гл. И, 2, а также 2 этой главы) зарядов при столкновении двух протонов не может родиться третий протон. Но у протона есть двойник — антипротон р, у которого оба заряда равны по абсолютной величине и противоположны по знаку зарядам протона. Поэтому рождение пары протон — антипротон законами сохранения зарядов не запрещено. Как образно выразился Д. И. Бло-хинцев, при столкновении протон — протон может породиться хоть вся Вселенная, была бы достаточно велика энергия столкновения.  [c.274]

Двойником странности является шарм (используется еще эквивалентный термин очарование ). Шарм С, так же как и странность, аддитивен, целочислен, сохраняется в сильных и электромагнитных взаимодействиях и может изменяться в слабых взаимодействиях. Шармированных (т. е. обладающих ненулевым шармом) частиц известно очень мало. Открытые шармированные частицы имеют нулевой барионный заряд и называются D-мезонами. Подобно странным частицам D-мезоны с заметной интенсивностью рождаются при столкновении обычных частиц. Закон сохранения шарма в сильных и электромагнитных взаимодействиях проявляется в том, что шармированные частицы (как и странные) рождаются только парами с нулевым суммарным шармом. Например,  [c.291]


ДВОЙНИКОВАНИЕ И ЕГО ГЕОМЕТРИЯ В МЕТАЛЛАХ С О. Ц. К., Г. Ц. К. и Г. П. У. РЕШЕТКАМИ, При ударном нагружении а-железа, например, во время скоростной пластической деформации, осуществляемой взрывом, возникают очень тонкие, кристаллографически правильно расположенные пластины — это двойники. Они образуются при деформации многих металлов с о. ц. к. структурой, включая молибден, вольфрам, хром, ниобий, тантал, а-железо. Двойники здесь обычно длинные и тонкие, редко достигающие толщины 5-10" см, поскольку с двойникованием связано протекание большой (7=0,707) пластической деформации (см. табл. 6). Плоскостями двойникования являются 112 (на рис. 77, а они перпендикулярны плоскости чертежа). Плоскости 112 упакованы в последовательности AB DEFAB . ... (79)  [c.135]

Для объяснения образования двойников используют полюсный механизм двойникования. Склонность к двой-никованию в о. ц. к. металлах возрастает с увеличением скорости деформации и понижением температуры. Так, при 4 К чистое железо при растяжении деформируется двойникованием. После растяжения при комнатной температуре двойники в чистом железе обычно не встречаются, однако ударное деформирование вызывает двой-никование при комнатной температуре. Примеси могут оказывать существенное влияние добавки кремния к  [c.136]

Вид деформации (растяжение или сжатие) сильно влияет на образование двойников в металле с г. п. у. решеткой. Так, в кристалле цинка (с/а= 1,856) с базисной плоскостью, параллельной оси образца, можно добиться двойникования при растяжении, так как плоскость Ki (1012) (рис. 80,6) после деформации относительно плоскости двойникования (10Г2) поворотом по часовой стрелке занимает положение К . Представив левую половину кристалла (рис. 80,6), помещенную в пассивный захват испытательной машины, убеждаемся, что сдвиг  [c.140]

S возможен только при растяжении. При сжатии кристалл цинка будет деформироваться путем сбросообра-зования. Наоборот, для кристалла Mg (с/а= 1,624) угол между базисной плоскостью и плоскостью двойни-кования уменьшается от 47 для Zn до 43° для Mg. Рассуждая аналогично, т. е. помещая левую часть монокристалла с базисной плоскостью параллельно действующему -усилию, убеждаемся, что по принципу Ле-Шателье можно получить двойникование только при сжатии, когда вектор 5 перехода плоскости Ki в Кч направлен против часовой стрелки в направлении пассивного захвата. Таким образом, для магния образование двойников следует ожидать при сжатии, а для цинка — при растяжении. Для металлов с еще меньшим соотношением осей, чем для магния (титан, цирконий), двойникование более сложное и наблюдается не только по плоскостям 10Г2 , но и по плоскостям 1122 и другим пирамидальным плоскостям (см. рис. 80, а).  [c.140]

Полюсный механизм для металлов с г. ц. к. решеткой можно представить, воспользовавшись возможностью расш,епления полной дислокации Л С на частичную неподвижную дислокацию Франка Аа и двойникующую дислокацию аС (см. развернутый тетраэдр Томпсона) по реакции  [c.143]

Освободившись, частичная дислокация может закручиваться относительно любой дислокации леса , имеющей винтовую компоненту вектора Бюргерса, т. е. перпендикулярно к плоскости скольжения двойникующей дислокации. Одна ветвь частичной дислокации при пе-  [c.144]

Рис. 82. Двойникующие дислокации 6В, образованные при скольжении дислокаций позади барьера Ломер—Коттрелла в г. ц. к. кристалле Рис. 82. Двойникующие дислокации 6В, образованные при <a href="/info/116858">скольжении дислокаций</a> позади барьера Ломер—Коттрелла в г. ц. к. кристалле
Следующим возможным механизмом двойникования может быть поперечное скольжение вблизи препятствий. Считают, что двойникование в г. ц. к. структурах может начаться при скоплении дислокаций за барьером Ломер — Коттрелла (рис. 82). Частичные дислокации 8В расщепляются (см. рис. 38) в скоплении на ба и аВ в плоскости двойникования, давая двойникующие дислокации. Такой механизм мог бы действовать при любом скоплении позади препятствия, однако упругое взаимодействие ограничивает испускание двойникующих дислокаций в плоскостях двойникования и требуются дополнительные механизмы (например, полюсный).  [c.144]

Реакция (84) энергетически не выгодна и возможна только при концентрации напряжений на двойниковом некогерентном фронте, что и имеет место в действительности. Реакция (84) дает набор испущенных дислокаций из некогерентных границ двойника с нулевым даль-нодействующим полем напряжений. Происходит увеличение длины двойниковой прослойки за счет эмиссии дислокаций из некогерентной границы. Деформация сдвига, произведенная испущенными дислокациями, эквивалентна деформации от исходной двойниковой границы, из которой они испущены. Существование эмиссионных дислокаций для о. ц. к. и г. п. у. кристаллов подтверждено экспериментами просвечивающей электронной микроскопии, наблюдаемым пробегом субграниц впереди двойника.  [c.145]

Препятствия, возникающие на пути движения двойника, тормозят перемещение двойникующих дислокаций, вызывая их нагромождение, т. е. модель Стро накопления дислокаций у препятствий справедлива и для взаимодействия двойников с препятствиями. Однако есть и различие, заключающееся в том, что концентрация на-  [c.145]

Границы двойников могут действовать как барьеры для скользящих дислокаций. Кроме того, при пересечении скользящих дислокаций с границами двойников могут образовываться двойникующие дислокации и распространяться новый двойник. Последний механизм образования новых двойников наиболее вероятен в кристаллах с высокой симметрией.  [c.147]

По данным Дж. Хирта, пересечение двойника скользящей дислокацией может быть причиной роста (или сокращения) двойника. Вследствие того что расщепляющиеся дислокационные реакции, возникающие при этом, энергетически не выгодны, рост двойника может происходить только при более значительных по сравнению со скольжением внешних приложенных напряжениях. Скользящие дислокации, взаимодействуя с двойником, может расширить или сузить его границы, преломившись, пройти сквозь двойник, оставив на нем изгибы и ступеньки. В том случае, когда дислокационные реакции, связанные с этими явлениями, не имеют места, граница двойника должна действовать как барьер, в результате чего образуются скопления скользящих дислокаций, которые приводят к сильному упрочнению и последующему разрушению.  [c.147]


Смотреть страницы где упоминается термин Двойник : [c.172]    [c.173]    [c.42]    [c.133]    [c.137]    [c.138]    [c.138]    [c.139]    [c.140]    [c.141]    [c.142]    [c.143]    [c.144]    [c.145]    [c.146]    [c.147]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.250 , c.252 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.40 ]



ПОИСК



Двойник оптический (бразильский)

Двойник печной

Двойник электрический (дофинейский, швейцарский)

Двойник японский

Двойники влияние условий выращивания

Двойники границы

Двойники деформационные

Двойники деформационные взаимодействие с дефектами

Двойники превращения

Двойники рекристаллизации

Двойники роста

Двойников ание

Двойников дислокационный механиз

Двойников плоскость

Дефекты двойники,

Деформация двойники

Змеевики, подвески, печные двойники и другие детали печей

Конон-двойник 306, VII

Кристаллы, двойники

Мартенсит двойникованный

Расчет двойников

Расчет печных двойников



© 2025 Mash-xxl.info Реклама на сайте