Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виды коррозии в электролитах

Повреждения пленок магнетита создают условия для протекания локальной коррозии котельного металла. К распространенным видам такой коррозии относится подшламовая. Под этим названием объединяют несколько разновидностей коррозии в электролитах, связанных с накоплением на теплопередающих поверхностях слоя рыхлых и пористых отложений. Характерной особенностью подшламовой коррозии является проведение процесса с использованием в качестве твердого деполяризатора оксидов железа и меди, находящихся на поверхности металла в катодной зон вблизи анодных участков.  [c.182]


Биокоррозия. Коррозия в электролитах, усиление которой идет при участии продуктов, выделяемых микроорганизмами. Этот вид коррозии особенно распространен на поверхности стальных конструкций, эксплуатируемых в морских условиях.  [c.61]

Таким образом, при коррозии в электролитах химическая энергия переходит в электрическую. Поэтому этот вид коррозии называют электрохимической коррозией. Если микроэлементы возникли вследствие неоднородности структуры металла или сплава, то коррозию называют структурной.  [c.227]

Конечным результатом работы многочисленных гальванических элементов микроскопических размеров является разрушение металла в электролитах. Таким образом, к химическим процессам при коррозии в электролитах присоединяются электрические явления, поэтому этот вид коррозии называют электрохимической коррозией.  [c.167]

По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС.  [c.26]


Электрохимическая коррозия происходит всегда в присутствии электролита — раствора, проводника электричества. Электрохимическая коррозия бывает нескольких видов, например, коррозия в электролитах, т. е. в жидкостях и водных растворах, проводящих электрический ток, к которым должны быть отнесены. морская и пресная воды.  [c.52]

Электрохимическая коррозия, или коррозия в электролитах, является результатом работы множества микроскопических короткозамкнутых гальванических элементов, возникающих на поверхности металла при контакте с электролитом. Их возникновение обусловлено неоднородностью металла или окружающей среды. Таким образом, электрохимическая коррозия предполагает наличие электрического тока, который возникает в процессе коррозии и не нуждается во внешней причине. При наличии внешней причины в виде блуждающих токов обычно наблюдается усиление явления коррозии.  [c.6]

Коррозия в электролитах — весьма распространенный вид разрущения металлов. В первую очередь это относится к коррозии металлов в пресной и морской воде, в растворах и расплавах солей, растворах кислот, щелочей. К электрохимической относится также коррозия во влажной атмосфере или в любом влажном газе, коррозия, возникающая в результате воздействия на металл почвы, грунта (почвенная или подземная коррозия), приложенного извне или блуждающего тока в почве (электрокоррозия).  [c.7]

По характеру самого процесса коррозию разделяют на две основные группы химическую и электрохимическую. Химическая коррозия протекает в неэлектролитах— жидкостях, не проводящих электрического тока, и в сухих газах при высоких температурах электрохимическая коррозия — в электролитах и во влажных газах и характеризуется наличием двух параллельно идущих процессов окислительного (растворение металлов) и восстановительного (выделение металла из раствора). Этот вид коррозии сопровождается протеканием электрического тока.  [c.9]

Мокрая атмосферная коррозия, имеющая место при относительной влажности воздуха, равной 100 проц., когда на поверхности металла образуются видимые слои влаги (в условиях действия дождя, /водяных п ров, тающего снега и т. д.). Отличием этого вида коррозии от электрохимической коррозии в электролитах, является лишь высокое омическое сопротивление тонкого слоя влаги, которое лимитирует скорость коррозии.  [c.35]

Коррозия металла. По характеру самого процесса коррозию разделяют на две основные группы химическую и электрохимическую. Химическая коррозия протекает в неэлектролитах — жидкостях, не проводящих электрический ток, и в сухих газах при высокой температуре. Электрохимическая коррозия — в электролитах и во влажных газах, характеризуется нал.ч-чием двух параллельно идущих процессов окислительного (растворение металлов) и восстановительного (выделение металла из раствора). Этот вид коррозии сопровождается протеканием электрического тока (рис. 1). Если привести в контакт два разнородных металла в присутствии разбавленных кислот, щелочей или растворов солей, то один из металлов (более активный) начнет разрушаться (рис. 2). Металлы и раствор образуют между собой электрическую цепь. По степени активности металлы располагаются в следующей последовательности бронза, медь, железо, никель, серебро, золото, платина.  [c.5]

Коррозия В электролитах — весьма распространенный вид коррозии, к которому принадлежит воздействие на металлические конструкции природных вод и большинства водных растворов. В зависимости от химического характера среды различают кислотную, щелочную, солевую, морскую коррозию и т. п. По условиям воздействия активной среды на поверхность металла этот тип коррозии будет получать еще такие добавочные характеристики коррозия при полном погружении, коррозия при неполном погружении или коррозия по ватерлинии, коррозия при переменном погружении, коррозия в спокойном электролите, коррозия при перемешивании и т. п.  [c.17]

Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим.  [c.181]


Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекраш,ении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока.  [c.295]

Чаще всего оборудование эксплуатируют в условиях, способствующих возникновению и интенсивному развитию местных видов коррозии. К таким условиям относятся контактирование разнородных металлов (контактная коррозия) наличие в конструкции щелей и зазоров (щелевая коррозия) одновременное воздействие на металл электролита и механических напряжений (коррозионное  [c.5]

Коррозия металлов — самопроизвольный переход металлов в ионное состояние вследствие взаимодействие их с окружающей средой. В результате коррозии образуются оксиды металлов, их соли, гидроксиды и другие соединения. По механизму протекания коррозия делится на химическую и электрохимическую, Чисто химическая коррозия протекает в неэлектролитах и сухих газах по механизму химических гетерогенных реакции. Электрохимическая коррозия возникает при контакте металлов с электропроводящими средами (электролитами). Этот вид коррозии наиболее распространен [83,89].  [c.16]

Электрохимическая коррозия металлов возникает на границе раздела фаз металл — электролит. Этот вид коррозии не зависит от типа электролита, будь то сверхчистая вода или расплав соли. Существенного значения не имеет и количество электролита — коррозию может вызвать даже слой влаги, толщиной в несколько десятков миллимикрон. Единственное условие, необходимое для осуществления процесса — это возможность совместного протекания анодной реакции ионизации металлов и катодной реакции восстановления тех или иных ионов и молекул на поверхности металла. Оно реализуется в том случае, когда равновесный анодный потенциал более отрицателен.  [c.15]

Коррозионные процессы, протекающие с кислородной деполяризацией, обычно наблюдаются в нейтральных средах или при небольшом смещении pH в кислую или щелочную область. Вследствие малой растворимости кислорода в электролитах и незначительной скорости его диффузии характерной особенностью этого вида коррозии является то, что скорость коррозионного процесса зависит в основном от концентрационной поляризации. В отличие от коррозионных процессов, протекающих с водородной деполяризацией, на скорость коррозии с кислородной деполяризацией значительное влияние оказывают перемешивание, повышение температуры и другие факторы, способствующие ускоренной диффузии. Наличие в металлах примесей, понижающих перенапряжение ионизации кислорода, не оказывает существенного влияния на скорость коррозионного процесса. При интенсивном перемешивании или слишком тонких слоях электролита, контактирующего с воздухом, диффузионная кинетика не имеет решающего влияния. В этом случае на скорость коррозии оказывает влияние перенапряжение ионизации кислорода и все связанные с ним вторичные явления.  [c.23]

Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах.  [c.124]

Качество поверхности влияет на коррозионную стойкость, когда изнашивание происходит без контактирования рабочих поверхностей. Различают два основных вида коррозии — химическую и электрохимическую. Химическая коррозия возникает при действии на металл сухих газов или неэлектролитов (бензина, смолы и др.). При химической коррозии детали машин покрываются слоем окислов — окалиной. Электрохимическая коррозия происходит при действии на металл растворов электролитов (солей, кислот, щелочей и т. д.). К этому виду коррозии следует отнести коррозию в атмосферной среде (атмосферную коррозию).  [c.401]

Химическая коррозия металлов имеет место при их взаимодействии с газами м парами химических элементов при отсутствии влаги, а также с жидкостями, не проводящими, электрический ток и не являющимися электролитами. Металл в этол/1 случае разрушается за счет чисто химических реакций на границе раздела его со средой. Такой вид коррозии характерен для лопаток газовых турбин, деталей реактивных двигателей, печ-  [c.6]

Качество поверхности влияет на коррозионную стойкость, когда изнашивание происходит без контактирования рабочих поверхностей. Различают два основных вида коррозии — химическую и электрохимическую. Химическая коррозия возникает при действии на металл сухих газов или неэлектролитов, электрохимическая — раствора электролитов. К последнему виду следует отнести коррозию в атмосферной среде (атмосферную коррозию).  [c.408]


Нейтрализующие амины по понятным причинам не защищают металл от действия кислорода. При высоких концентрациях углекислоты в паре защита от углекислотной и кислородной коррозии конденсатопроводов отопительных котельных (обычно низкого давления) достигается применением аминов с длинной боковой цепью (содержание в составе молекулы не менее 12—18 атомов углерода), которые называют пленкообразующими. Эти амины адсорбируются поверхностью металла и делают ее гидрофобной, т. е. несмачиваемой водой, чем и обеспечивается защита металла от коррозии (прекращение доступа электролита). Дозировка этих аминов не зависит от содержания СО2 и составляет обычно 2 мг/кг пара. Пленкообразующие амины не растворяются в воде и дозируются в виде эмульсии в барабан котла или непосредственно в паропровод. Часто применяют не сами амины, а их ацетаты (уксуснокислые соли), обладающие лучшей растворимостью и образующие особенно стойкие эмульсии с водой. Вводятся эти амины обычно насосами-дозаторами. Во время первого периода обработки применяют повышенную дозировку амина, пока не образуется адсорбционная пленка на поверхности металла затем дозировку снижают и расходуют амин только на поддержание указанной защитной пленки.  [c.400]

Особый вид атмосферной коррозии (роль электролита играет пленка влаги с растворенными газами, образующаяся на металлической поверхности в атмосфере), осложняющийся вследствие присутствия агрессивных веществ в накипях, отложениях шлама, окалине и других пленках на поверхности металла котельных агрегатов и паровых турбин при длительной их остановке. Отложения ржавчины особенно интенсифицируют процесс. Механизм процесса — электрохимическая коррозия, скорость которой контролируется главным образом диффузией кислорода к поверхности. Форма повреждений—более или менее равномерное разъедание поверхности в местах с наиболее вырал енной электрохимической неоднородностью (отложения, повреждения и т. д.). В качестве защитных мероприятий рекомендуется  [c.582]

Локальная коррозия очень часто проявляется в виде взаимодействия отдельных элементов макро- и микроструктуры металла с электролитом. Анализируя макро- и микроструктуру металла, можно, как правило, прогнозировать его предрасположенность к тому или иному виду коррозии.  [c.6]

Таким образом, мы видим, что в кислых электролитах уменьшение толщины слоя приводит вследствие облегчения доступа кислорода к значительному преобладанию кислородной деполяризации над водородной. Подтверждается мнение Акимова [По том, что процессы атмосферной коррозии протекают преимущественно с кислородной деполяризацией даже в кислых электролитах.  [c.111]

При рассмотрении влияния температуры на процессы атмосферной коррозии следует учесть одну весьма важную особенность, отличающую их от других видов коррозии. Необходимо всегда иметь в виду, что при коррозии металлов в атмосфере с изменением температуры меняется и длительность контакта электролита с металлом. Поэтому в суммарном выражении корро-  [c.229]

Механизм процесса газовой коррозии, несмотря на кажущийся чисто химический характер, является, по сути дела, электрохимическим процессом, что видно из рис. III-2. Практически единственным фактором, который отличает этот вид коррозии от электрохимической, является отсутствие слоя жидкого электролита, соприкасающегося с корродирующим металлом. В данном случае роль электролита выполняет окисный слой на металле.  [c.64]

Местные нарушения сплошности заш,итных пленок также являются причиной возникновения локальной коррозии. Чаще всего этот механизм реализуется на сплавах, склонных к пассивации. Нарушение по каким-либо причинам пассивного состояния на отдельном участке поверхности приводит к тому, что анодные реакции концентрируются на этом месте и протекают с относительно большой скоростью. Характерным локальным процессом такого вида является питтинговая коррозия в ее развитии играет большую роль и местное изменение объемных свойств электролита.  [c.14]

До сих пор мы в основном рассматривали примеры контактной коррозии в условиях, когда скорость электродных процессов определяется скоростью протекания самих электрохимических реакций. При этом имели в виду, что доставка к электроду восстанавливающих частиц и отвод продуктов анодной реакции происходит беспрепятственно. Это, как уже указывалось, имеет место в кислых средах в связи с относительно высокой концентрацией ионов водорода и их большой подвижностью, а также при значительных скоростях перемешивания нейтральных электролитов. Однако в неподвижных и менее интенсивно перемешиваемых нейтральных электролитах картина меняется ввиду малой растворимости кислорода в нейтральных электролитах и быстрого насыщения их продуктами анодной реакции в не очень интенсивно перемешиваемых электролитах может наблюдаться заметное изменение потенциалов электродов. Это связано с затруднениями в доставке к электроду исходных и конечных продуктов реакции и влияет на контактную коррозию. Подобное изменение потенциала электродов принято называть концентрационной поляризацией.  [c.41]

При погружении в электролит двух разнородных металлов, обладающих различными электродными потенциалами, в электролит будут переходить ионы металла г более низким электродным потенциалом. Если оба металла привести в контакт (при помощи проводника, например), то возникнет гальванический элемент, в котором избыточные электроны от металла с более низким электродным потенциалом (анода) будут перемещаться к металлу с более высоким электродным потенциалом (катоду). Цепь замкнется через электролит, где заряды будут передаваться ионами электролита. Таким образом, электрическое равновесие на аноде будет непрерывно нарушаться, и анод будет разрушаться, т. е. корродировать. Второй электрод (катод) разрушению не подвергается. На корродирующей поверхности металла имеются различные по своим свойствам участки, которые при соприкосновении с электролитохм выполняют роли анодов или катодов. Большей частью поверхность металла представляет собой многоэлектродный гальванический элемент, В зависимости от размеров анодных или катодных участков они образуют макрогальванические или микрогальва-нические элементы. Причины образования электрохимической неоднородности могут быть самые различные макро- и микровключения в сплаве, наличие границ зерен поры в окисной пленке, неравномерная деформация и др. По условиям протекания коррозия разделяется на следующие виды 1) газовая коррозия 2) коррозия в неэлектролитах (например, стали в бензине) 3) атмосферная коррозия 4) коррозия в электролитах (подразделяется в зависимости от характера коррозионной среды на кислотную, щелочную, солевую и т. п.) 5) грунтовая коррозия (например, ржавление трубопроводов) 6) структурная коррозия, обусловливается различными включениями в металле 7) электрокоррозия (возникает под действием блуждающих токов) 8) контактная коррозия, возникает при контакте в электролите металлов с разными электродными потенциалами 9) щелевая коррозия (возникает в узких щелях, например в резьбовых соединениях)  [c.152]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]


В агрессивных средах разрушение поверхности твердого тела происходит иод влиянием двух одновременно протекающих процессов -коррозии (в результате химического и электрохимического взаимодействия материала со средой) и механического изнашивания. Химическое взаимодействие реализуется при контакте материалов с сухими газами или неэлектропроводными агрессивными жидкостями электрохимическая коррозия - при контакте металлов с электролитами (водные растворы кислот, щелочей, солей и т.д.). При этом наблюдаются два процесса - анодный (непосредственный переход атомов металла в раствор в виде ионов) и катодный (ассимиляция избыточных электронов атомами или ионами раствора). В результате в зоне трения возникает элек1рический ток.  [c.137]

В фпзико-химическом аспекте различают два вида коррозии химическую — в горячих или сухих газах, в маслах, бензине и других жидкостях, не являющихся электролитами электрохимическую — протекающую в средах, которые могут быть электролитами.  [c.10]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]

Следует особо подчеркнуть, что в натурных условиях все названные виды эрозии взаимосвязаны друг с другом и действуют одновременно. Попадание капли,, движущейся с большой скоростью, на поверхность лопатки является причиной начала кавитации, Микроударное воздействие капли о поверхность металла изменяет его электрический потенциал в месте удара, что стимулирует электрохимическую коррозию в присутствии электролита. Образовавшееся в месте удара микронарушение рельефа поверхности (язва) облегчает образование вихря при растекании следующей капли, попавшей на это место, что в свою очередь способствует образованию новой кавитационной полости. Ее захлопывание вызывает кавитационную эрозию. Так, в упрощенном виде можно представить взаимовлияние и взаимосвязь указанных выше трех явлений (удар капли, возникновение кавитационной полости и изменение  [c.140]

Зависимость истинной скорости коррозии стали от концентрации силиката натрия в 0,1 н. ЫагЗО показана на рис. 5,28. При малых концентрациях ингибитора скорость коррозии возрастает. Более высокие концентрации защищают сталь полностью. Аналогичная зависимость наблюдается и в более разбавленных электролитах (30 мг/л Na I +70 мг/л Na2S04). Оказалось, что концентрации силиката (от 10 до 100 мг/л), являющиеся эффективными для защиты от коррозии в проточных системах, не уменьшают в заметной степени коррозию в замкнутых системах с покоящимся объемом электролита. Для эффективной защиты таких систем требуются значительно более высокие концентрации силиката. Малые концентрации силиката обычно приводят к увеличению скорости коррозии. Однако эта коррозия отличается от наблюдаемой в присутствии малых концентраций хроматов и нитритов она носит менее выраженный локальный характер, вместо питтингов и язв появляются местные очаги коррозии, занимающие относительно большую площадь. Такой вид местной коррозии, по сравнению с язвенной, является менее опасным, и в этом отношении силикаты обладают преимуществами перед хромата-ми и нитритом натрия.  [c.185]

При использовании температурного фактора как. средства повышения скорости коррозии необходимо учитывать характер протекающего процесса. Скорость электродных реакций с повышением тёмпературы увеличивается, однако температура влияет и на ряд других факторов— растворимость кислорода, свойства защитных пленок на металлах и т. п. Необходимо иметь в виду, что в открытых системах скорость кислородной деполяризации возрастает при увеличении температуры лишь до определенного предела ( 60°С)- Дальнейшее ее повышение резко уменьшает растворимость кислорода, что приводит к обратным результатам, т. е. к уменьшению скорости коррозии.. Для процессов коррозии, протекающих с водородной деполяризаи ией (кислые электролиты), этих ограничений не существует и температуру можно повышать вплоть до температуры кипения. При этоад рекомендуется учитывать изменение температурного коэффициента процесса.  [c.10]

В практике чаще всего встречаются с примерами разрушений металлических конструкций вследствие электрохимической коррозии. Этот вид коррозии возникает в растворах электролитов, причем ему сопутствуют протекающие на поверхности металла электрохимические процессы окислительный — растворение металла — и восстановительный — электрохимическое восстановление компонентов среды. На скорость электрохимической коррозии влияют особенности как самого металла (вид, структура, неоднородности, наличие пленок и покрытий), так и электролитической среды (состав, концентрация, температура, кислотность и т. д.). Влияют также условия эксйлуатации металлической конструкции. Видами электрохимической коррозии являются атмосферная, подземная, морская, биологическая, коррозия под действием блуждающих токов и др.  [c.12]

Процессы, развивающиеся в щелях, на самом деле более сложны и обусловлены рядом факторов. Оказалось, что по механизму щелевой коррозии протекает гораздо большее число процессов, чем это ранее предполагалось. В частности, к этому виду коррозии надо отнести коррозию полифазных контактов в кислых электролитах [19—21], питтинго-вую коррозию нержавеющих сталей [15, 16], коррозионные процессы, развивающиеся вдоль ватерлинии [22].  [c.205]


Смотреть страницы где упоминается термин Виды коррозии в электролитах : [c.34]    [c.22]    [c.19]    [c.326]    [c.279]    [c.335]    [c.8]    [c.27]    [c.119]    [c.29]   
Смотреть главы в:

Справочник по машиностроительным материалам Том 1  -> Виды коррозии в электролитах



ПОИСК



Коррозия электролитах

Электролит



© 2025 Mash-xxl.info Реклама на сайте