Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеры конструкций балок

ПРИМЕРЫ КОНСТРУКЦИИ БАЛОК [76] [108]  [c.322]

Примеры конструкций балок  [c.323]

Пример конструкции рамы, у которой каждая из средних поперечных балок нагружена равномерной нагрузкой, интенсивности  [c.889]

Во многих типах конструкций оказывается предпочтительнее использовать составные или собранные из стандартных элементов балки. Два примера таких балок приведены на рис. 5.17. Первым примером служит полая коробчатая балка квадратного поперечного сечения, собранная из четырех деревянных планок, соединенных между собой гвоздями, шурупами или клеем, вторым — составная балка, сваренная из трех стальных пластин.  [c.167]


На фиг. 154, г—е приведены примеры сварных балок с коробчатыми поперечными сечениями. Профили, изображенные на фиг. 154, г, сварены из прокатных листов, профиль фиг. 154, е из штампованных деталей U-образной формы. Большим преимуществом коробчатых сварных балок по сравнению с двутавровыми является их хорошая сопротивляемость при работе на кручение и косой изгиб. В большинстве конструкций балок поперечные сечения делают постоянными по длине. К переменным сечениям прибегают главным образом в балках большого пролета. Балки с переменными сечениями конструируют разными способами изменяют толщину ли ширину горизонтальных листов (фиг. 155, а), что наиболее целесообразно изменяют высоту вертикального листа (фиг. 155, б) при толщине листа s>30—35 мм иногда применяют несколько пар горизонтальных листов (фиг. 155, в). В последнем случае балка имеет наибольшее количество горизонтальных листов в сечениях с максимальным моментом.  [c.277]

Примеры легких конструкций балок из зарубежной практики приведены на фиг. 168, г, д.  [c.323]

Книга представляет собой курс лекций по основам теории оптимального проектирования конструкций, прочитанный В. Прагером в Международном центре по механике (Удине, Италия). Она содержит обобщенное изложение фундаментальной теории автора и некоторые ее приложения. В частности, рассмотрены решетки, состоящие из перекрестных балок. В русский перевод включены две ранние работы автора, дополняющие этот курс лекций и иллюстрирующие его примерами приложений.  [c.4]

Предлагаемая книга основана на небольшом курсе из шести лекций, прочитанном В. Прагером в Международном центре по механике в г. Удине (Италия) в 1974 г. для молодых ученых, специализирующихся в данной области. В ее первой части излагаются экстремальные принципы для линейно-упругих и идеально пластических конструкций и далее на их основе выводятся необходимые и достаточные условия глобальной оптимальности. Применения общей теории иллюстрируются простейшими примерами, относящимися главным образом к проектированию трехслойных упругих балок, податливость которых подчинена одному или нескольким ограничениям.  [c.6]

Методика разработки системы АКД электронных устройств и ее реализация приведены на примере электронного блока. Несущая конструкция этого блока — корпус (рис. 5.2), представляющий собой свинчиваемый каркас из унифицированных конструктивных профилей (балок 3, 5, стоек 1, 2 н др.),и панели — лицевая и задняя (остальные позиции указаны в спецификации, которая здесь не представлена). Профили (рис. 5.3) изготавливаются из легких сплавов. Конфигурация некоторых из них (например, балка 3) позволяет заложить в пазы А плавающие гайки или пластины с резьбовыми отверстиями для крепления к ним составных частей пластин, приборов, радиоизделий, лицевой и задней панелей, печатных узлов и др. На лицевой панели располагают элементы управления кнопки, переключатели, гнезда и др. с соответствующими надписями или условными изображениями с символами на задней — соединители (разъемы) для обеспечения электрической связи блока с остальной аппаратурой, предохранители и др. Унификация каркаса заключается в возможности установки и закрепления в нем самых разнообразных приборов. В зависимости от их типов и количества возможно применение одного из типоразмеров каркаса. Каждому типоразмеру соответствует стандартный ряд габаритных и установочных размеров (рис. 5.4, табл. 5.1).  [c.89]


Примером интенсивного коррозионного разрушения из-за неудачной формы конструктивных элементов может служить мост с решетчатыми стальными фермами [5]. Главные балки крайних пролетов моста выполнены в виде коробчатого сечения из двух двутавровых балок, сваренных по всей длине и закрытых по концам негерметичными перегородками. В балках возле опор вырезаны монтажные проемы, через которые внутрь коробчатого сечения попадала вода. Балки средних пролетов моста выполнены в виде решетчатой конструкции. Пояс представлял собой конструкцию из двух расположенных горизонтально двутавровых балок, которые образовали желоба, где скапливалась вода и пыль. Конструкция раскосов представляла собой наклонные желоба, подводящие воду к узлу, выполненному в виде открытой емкости, собирающей воду, пыль и т. п. Процесс коррозии в таких условиях проходил в три раза быстрее обыч-  [c.19]

Геометрические характеристики элементов модели, как и в предыдущем примере, вычисляются из равенства энергий деформации реальной конструкции и стержневой модели. Конечные элементы приняты двух типов — линейный конечный элемент, имеющий шесть степеней свободы (см. табл. 2.1) и пять степеней свободы. В расчете получены относительные прогибы в восьми сечениях пролетного строения и изгибающие моменты Мх в восьми сечениях каждой из балок. Расчетная схема включает 152 элемента, 117 узлов.  [c.125]

В-четвертых, когда точное решение задачи теории упругости не может быть найдено, вариационный метод зачастую обеспечивает формулировку для приближенного решения задачи, которая дает приближенное решение с заданной степенью точности. Здесь вариационный метод обеспечивает не только приближенное решение определяющих уравнений, но и условия приближенного выполнения граничных условий. Поскольку точное решение задачи теории упругости возможно лишь в очень редких случаях, то для практических целей следует удовлетвориться приближенными решениями. Теории балок, пластин, оболочек и многокомпонентных конструкций являются типичными примерами приближенных формулировок, демонстрирующими мощь принципа виртуальной работы и связанных с ним вариационных методов.  [c.20]

В настоящее время в сварочных установках большое применение получили сварочные тракторы (описанные ранее), которые не требуют сложных устройств для передвижения. При сварке балок сварочные тракторы передвигаются непосредственно по листам балки. Примером использования сварочных тракторов в автосварочных установках может служить установка для сварки кольцевых швов цилиндрических конструкций, схема которой изображена на рис. 129.  [c.185]

Полезная ширина полок широкополых балок. В качестве ДРУ ого примера применения начала наименьшей Работы к плоской задаче о балках прямоугольного сечения рассмотрим балку сочень широкими полками (фиг. 99). Такие балки часто встречаются в железобетонных сооружениях и в конструкциях корабельных корпусов.  [c.177]

На рис. 48 показан пример правки стального листа толщиной 15 мм, получившего симметричную деформацию (выпуклость) со стрелой прогиба 7 мм. Стрелками и пунктиром указаны участки нагрева, цифрами I, II, III и IV — последовательность нагрева. Правку изделий нагревом газовым пламенем широко применяют в СССР и за рубежом. Этим способом, например, правят листы толщиной до 25 мм до и после резки их на гильотинных ножницах или листы толщиной более 25 мм до и после кислородной резки. Способ правки нагревом применяют также после сварки станин прессов и станков, судовых конструкций, валов, сварных колонн, балок и пр.  [c.106]

После выполнения рихтовки крановых путей по высоте в рассмотренных выше примерах рельсовый путь следует установить в проектное положение, совместив ось рельсового пути с осью крановых балок. После проверки правильности положения смонтированных конструкций крановых путей крепежные гайки должны быть закреплены установкой контргаек. Повторная подтяжка крепежных болтов производится под нагрузкой.  [c.340]

Используются также простейшие стеллажи из горизонтальных балок, установленных на стойках высотой 200—400 мм. На рис. 13.3 показан пример сборки листовых конструкций с помощью простейших приспособлений и сборки конструкций из профильного металла — углового, двутаврового и т. п. Кромки со-  [c.164]


О преимуществах сварных конструкций перед клепаными можно судить по примеру, взятому из практики проектирования и изготовления пролетных строений железнодорожных мостов. Приведенные данные относятся к типовому пролетному строению железнодорожного моста пролетом Ь = 23 м. На фиг. 2 приведен узел сопряжения горизонтального пояса главной балки с ее вертикальной стенкой, выполненный в двух вариантах для клепаной конструкции, применявшейся ранее, и для сварной конструкции, принятой в настоящее время для серийного изготовления. Клепаная конструкция является более сложной по форме и значительно уступает по своим показателям сварной конструкции, обладающей более совершенной формой. В сварной конструкции экономия веса главных балок составляет 24,8%, трудоемкость их изготовления снижается на 23,6%, а стоимость пролетного строения уменьшается на 25,4%.  [c.9]

В качестве примера первого типа узлов может служить пересечение продольных и поперечных балок проезжей части мостового пролетного строения. Ко второму типу узлов могут быть отнесены примыкания поперечных балок к главным фермам того же сооружения. Подобные типы узлов балочных конструкций можно встретить и в различных других сооружениях.  [c.151]

По предложению автора, подобно тому как при аварии, разобранной в примере 1е, обе отделившиеся части фундамента были связаны с помощью. четырех мощных анкеров (см. рис. XI.13), причем два из них пропущены через отверстия, просверленные в теле фундамента. Концы анкеров соединены попарно четырьмя поперечными балками. Анкерные стержни были напряжены с помощью гидравлических домкратов, включенных между поперечными балками и фундаментом. После натяжения положение балок фиксировалось клиньями. Узел а на рис. XI.13 создавал некоторые трудности, которые были преодолены путем устройства специальной переходной конструкции,изображенной на рис. XI. 13 справа. Чтобы уменьшить инерционные силы, число оборотов машины было понижено со 122 до 105 o6 muh и установлены дополнительные противовесы.  [c.388]

Рамные конструкции представляют собой систему жестко соединенных балок. Примером может служить конструкция сварного портала крупного поворотного крана (рис. 76), в которой коробчатые сечения опорных колонн после сварки внутри заливают бетоном.  [c.37]

Сколь важно решение подобной задачи для судостроения, можно видеть из следующих примеров. Конструкция днища пассажирского или грузового судна состоит из среднего киля, нескольких параллельных ему продольных балок — стрингеров — и многих поперечных балок — шпангоутов. Опорами для киля и стрингеров служат поперечные переборки, разделяющие отдельные отсеки судна. Ввиду относительно частого расположения пшангоутов, равномерно распределенных между переборками, обычно полагают, что продольные связи — киль и стрингеры — лежат на сплошном упругом основании. Такая схематизация явления, существенно упрощая постановку инженерной задачи, не вносит в ее решение практически заметных искажений.  [c.46]

Обсуждаются типичные задачи оптимального проектироваиия конструкций, освещаются математические методы, используемые в этой области. Вводный пример (разд. 2) посвящен проектированию балок с заданным максимальным прогибом показано, как долл ная дискретизация мол ет привести к задаче нелинейного программирования, в данном случае — выпуклого программирования. Довольно подробно обсулсдается задача об оптимальном очертании ферм (разд. 3).  [c.87]

Допускаемый прогиб [б] зависит от назначения и условий работы рассчитываемого элемента конструкции и колеблется в широких пределах. Например, для балок, валов или осей [б] выражают в долях пролета I (расстояния между опорами), т. е. принимают [б] = =11к, где к — положительное число. Например, для валов и шпинделей металлорежуш,их станков [б] = (0,005.. . 0,001) I, а для балок и перекрытий гражданских и промышленных зданий колеблется от //150 до 0,001 /. В частности, жесткость балки в примере 2.23 соответствует этому значению ее прогиб 5==ц, =0,001 /.  [c.228]

Классическим примером такого подхода является расчет по предельным нагрузкам. В качестве внешнего параметра принимается система действующих сил. Их предельное значение устанавливается различными способами в зависимости от особенностей конструкции. Для балок и рам, работающих на изгиб, наиболее распространенным является известный из сопротпвлоБия материалов прием врезания пластических шарниров. Нагрузка считается предельной в том случае, если рама с врезанными шарнирами становится кинехматически изменяемой.  [c.46]

Рис. 1.4. Примеры стержневых конструкций а) мостовое пролетное строение со сквоз ными фермами / — распорка продольных связей, 2 — диагональ продольных связей,, 3 — промежуточные поперечные связи, 4 — верхний пояс фермы, 5 — опорный расков, 6 — стойка 7 — продольные связи продольных балок, 8 — подвеска. 9 — поперечная балка, 10 — раскос, И — продольная балка, 12 — нижний пояс фермы, 13 — нижнна связи 6) отсек фюзеляжа самолета в) рамный купол г) отсек корпуса корабля д) арочное мостовое пролетное строение е) пролетное строение моста комбинированной системы (системы К. Г. Протасова (ЛИИЖТ), ферма о очень жестким иижним поясом). Рис. 1.4. Примеры <a href="/info/453873">стержневых конструкций</a> а) мостовое пролетное строение со сквоз ными фермами / — распорка продольных связей, 2 — диагональ продольных связей,, 3 — промежуточные поперечные связи, 4 — <a href="/info/456750">верхний пояс фермы</a>, 5 — опорный расков, 6 — стойка 7 — продольные связи продольных балок, 8 — подвеска. 9 — <a href="/info/355503">поперечная балка</a>, 10 — раскос, И — продольная балка, 12 — <a href="/info/456751">нижний пояс фермы</a>, 13 — нижнна связи 6) отсек фюзеляжа самолета в) рамный купол г) отсек корпуса корабля д) арочное мостовое пролетное строение е) пролетное строение моста <a href="/info/54036">комбинированной системы</a> (системы К. Г. Протасова (ЛИИЖТ), ферма о очень жестким иижним поясом).
Следует отметить, что при проектировании конструкций таких систем необходимо руководствоваться не только одними конструктивными соображениями, но и осуществлять такую конструкцию, чтобы для нее можно было составить достаточно четкую расчетную динамическую модель. Это дает возможность выполнять ее виброакустический расчет в зоне хотя бы низких частот, несущих основную долю колебательной энергии. Для примера будем рассматривать только вертикальные колебания. Исследуемую конструкцию представим в виде двух балок (рис. VIII.2) первой балки 2 (верхней платформы), имеющей прогибы (х), жесткость E J2 и погонную массу jiai полученную с учетом размазывания масс агрегатов, установленных на ней, и второй балки I (промежуточной рамы), имеющей соответствующие параметры (х),  [c.357]


Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]

В третьей главе книги рассмотрены особенности конструирования и расчета на прочность и жесткость пластмассовых деталей из гомогенных и гетерогенных полимеров с учетом реономности их свойств, т. е. зависимости от времени, а также влияния температуры. Предложены методы инженерных расчетов на прочность пластмассовых стержней, балок, пластин и других элементов конструкций. Приведены практические примеры расчетов.  [c.8]

Насколько широко использовал Гауди в своей работе регулярные поверхности, лучше всего видно на примере внутреннего помещения Саграда Фамилия — его главного творения. Все поверхности следует представить как полностью состоящие из регулярных поверхностей (рис. 223). Небольшая школа рядом с Саграда Фамилия (1909—1910 гг.) была последовательно построена из регулярных поверхностей. Волнистая форма покрытия достигалась посредством балок, расположенных на прямой продольной балке в середине здания (рис. 224 и 225). Само покрытие состоит из нескольких слоев плоских кирпичей, уложенных по принципу каталонской кладки. Внешняя стена, имеющая тонкий слой кирпичной кладки, сделана таким образом, что напоминает поверхность перекрытия из коноидов и представляет собой складчатую конструкцию. Распростертая форма сооружения определяется из простых пропорций 1 2 4 .  [c.113]

В качестве примера расчета на удар сложной конструкции разберем случай удара груза Q посредине пролета балки, опирающейся в А на шарнирную неподвижную опору, а ъ В — на шарнирную опору, поставленную на вторую балку посредине ее пролета (рис. 426). Пролет первой балки равен li, момент инерции Jj, модуль упругости для второй балки соответствующие величины равны 1 , J , Е. Наибольшие динамические напряжения возникнут в крайних волокнах средних сечений балок первой и второй. Найдем эти нап-ряжещ5я.  [c.526]

В качестве примера статического моделирования геометрически нелинейной упругой системы рассмотрим тонкостенную балку, изображенную на рис. 5.6 197]. Здесь натурный образец из материала В95Т нагружался по схеме растянуто-изогнутого стержня. Геометрически подобные модели балок из целлулоида марки Т1 были изготовлены в масштабах и путем склейки. Таким образом, в этом примере масштаб толщин тонкостенной конструкции fto и масштаб длин принимались одинаковыми. Согласно уравнению (5.40) равенство ко — 1 обеспечивает подобие модели и натуры по относительным деформациям при е = idem.  [c.104]

В железобетонных конструкциях к схеме составного стержня приводятся несущие конструкции многоэтажных зданий, рамные каркасы и диафрагмы с проемами (рис. 7). Ригели и перемычки здесь играют ту же роль, что планки в металлических колоннах. Сюда же можно отнести сквозные балки типа фермы Виренделя (рис. 8). Отметим также возможность использования в расчете совместной работы железобетонных балок с уложенным по ним и замоноличенным ребристым настилом, воспринимающим сжатие вдоль оси балки и образующим совместно с балкой составной стержень (рис. 9). Широкое распространение в строительстве имеют пустотелые железобетонные плиты с каналами круглого сечения (рис. 10), а также балки с аналогичными вырезами. В последних двух случаях жесткость связей целесообразно находить экспериментально. Приведенными примерами перечень конструкций, сводящихся к схемр составного стержня, далеко не исчерпывается.  [c.8]

В главе проводится сопоставление различных способов получения дискретных моделей сплошных сред в виде систем дифференци-ально-разностных уравнений или систем обыкновенных дифференциальных уравнений типа уравнений Ньютона для описания движения и деформирования. Предлагается дискретно-вариацпон-ный метод построения энергетически согласованных дискретных моделей деформирования сред и элементов конструкций, выявляются его характерные особенности и возможности. Рассматривается построение различных дискретных моделей для расчета нелинейных процессов упругопластического деформирования балок, осесимметричных и произвольных оболочек. Приводятся численные примеры расчетов. Дальнейшее развитие и обобщение метода для слоистых и композиционных сред и элементов конструкций при динамическом деформировании и разрушении проведены в главах 5, 6.  [c.83]

При исследовании поведения балок или других конструкций за пределом упругости следует иметь в виду, что здесь принцип наложения неприменим и поведение конструкции зависит не только от конечных значений нагрузок, но также и от порядка их приложения. Для того чтобы продемонстрировать это обстоятельство, рассмотрим балку АВ, на которую действуют две силы Р (рис. 9.16, а). Если силы прикладываются одновременно, то эпюра изгибающих моментов имеет форму, показанную на рис. 9.16, Ь, а величина силы, при которой начинает возниК)ать пластическое течение, составляет Р =9М /Ь. Тэперь предположим, что первой прикладывается сила в точке С, а уже вслед за тем — сила в точке О. При действии только силы, приложенной в точке С, эпюра изгибающих моментов имеет форму, показанную на рие. 9.16, с. Величина максимального момента вдвое превышает ту, которая была найдена в предыдущем примере, откуда следует, что и при действии только одной силы Р, приложенной в точке С, могут иметь место пластические де формации, хотя ее величина будет оставаться мецьще значения Рт найденного выше. Пластические деформации не исчезнут и тогда, когда в точке О прикладывается другая сила Р отсюда становится очевидным, что окончательное состояние балки будет отличаться от того случая, когда нагрузки действовали одновременно.  [c.365]


Рассмотрим пример расчета вынужденных колебаний быстроходного токарного станка с числовым программным управлением, предназначенного для работы минералокерамическим инструментом. При разработке технического проекта этого станка необходимо было обосновать форму и компоновку несущей системы. В частности, наиболее простым йсполне-нием несущей системы станка является ее исполнение в виде станины на двух ножках. Более сложной и металлоемкой является рамная конструкция. Исполнение станины и основания станка в виде балок, скрепленных между собой на всей длине, является наиболее металлоемким вариантом.  [c.69]


Смотреть страницы где упоминается термин Примеры конструкций балок : [c.829]    [c.477]    [c.377]    [c.473]    [c.161]    [c.277]    [c.274]    [c.124]    [c.461]    [c.193]    [c.322]   
Смотреть главы в:

Сварные конструкции Издание 3  -> Примеры конструкций балок



ПОИСК



781 — Конструкции — Примеры

Устойчивость балок подкрановых Пример конструкций — Расчет

Устойчивость балок подкрановых Пример стержневых элементов конструкций — Расчет



© 2025 Mash-xxl.info Реклама на сайте