Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые свойства дуги

ЭЛЕКТРИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ДУГИ  [c.222]

Тепловые свойства дуги.  [c.38]

Наиболее важным свойством для сварки являются тепловые свойства дуги. Температура сварочной дуги очень высокая — около 5500 °С и зависит от диаметра электрода, плотности тока, материала электродов и состава газовой среды. На катоде она более низкая, чем на аноде, и максимального значения достигает в столбе дуги. При ручной сварке на постоянном токе разница температур на катоде и аноде используется для увеличения расплавления электрода или изделия. Тепловые возможности сварочной дуги измеряются ее тец-ловой мощностью. Полная тепловая мощность дуги 6 , количество теплоты в Дж/с, выделяемое дугой в единицу времени, может быть выражена как эквивалент электрических характеристик произведением сварочного тока 7 на напряжение дуги 7д  [c.38]


Тепловые свойства дуги Тепловая энергия дуги  [c.18]

Какие основные электрические и тепловые свойства электрической дуги  [c.240]

Процесс распространения теплоты в металле зависит от ряда факторов эффективной тепловой мощности дуги, характера ее перемещения, размера и формы свариваемого изделия, теплофизических свойств материала. Влияние этих факторов на нагрев изделия можно оценить по изменению формы изотерм температурного поля (рис. 2.3). С увеличением мощности дуги области металла, нагретые до определенных температур, расширяются, а увеличение скорости перемещения дуги приводит к сужению этих областей в направлении, перпендикулярном оси шва, и сгущению изотерм перед дугой.  [c.21]

Наиболее важной характеристикой сварки являются тепловые свойства ху . Температура на катоде более низкая (3200 °С), чем на аноде (3900 °С), а максимального значения (6000 °С) она достигает в столбе дуги.  [c.377]

Тепловые свойства сварочной дуги определяются при рассмотрении ее в качестве источника тепловой энергии, эффективная тепловая мощность которого q есть количество теплоты, введенное за единицу времени в металл изделия и затраченное на его нагрев, т. е.  [c.8]

Известно, что автомобильные детали, подлежащие наплавке, изготовляются из конструкционных углеродистых и легированных сталей и, как правило, термически обработаны на высокую твердость, работают преимущественно на износ при значительных нагрузках, во многих случаях знакопеременных. При восстановлении деталей сваркой и наплавкой детали подвергаются большим тепловым воздействиям. При этом важно обеспечить деталям требуемые жесткость, прочность и износостойкость. В этом отношении большую роль играют глубина проплавления основного металла, величина зоны термического влияния, структура наплавленного слоя и качество его поверхности и др. Все эти свойства и эксплуатационная долговечность восстановленных деталей определяются режимами наплавки и возникающими при этом тепловыми воздействиями на деталь, применяемыми материалами (электродная проволока, флюсы, электроды) и др. Рассмотрим кратко основные из этих вопросов, являющихся общими и одинаково важными при всех способах восстановления деталей сваркой и наплавкой. При сварке и наплавке деталей горение дуги сопровождается выделением большого количества теплоты. Деталь подвергается быстрому местному нагреву. Количество теплоты в калориях, введенное в единицу времени в металл детали (эффективная тепловая мощность дуги), может быть определено по уравнению  [c.215]


Тепловые свойства сварочной дуги  [c.13]

Формы изотерм зависят от параметров режима и теплофизических свойств металла. Режим дуговой сварки определяется тепловой мощностью дуги и скоростью ее перемещения, а также производной этих двух величин — погонной энергией.  [c.54]

При сварке малоуглеродистой стали тепловое воздействие дуги не вызывает существенных изменений свойств околошовной зоны и режим, выбранный исходя из условий наилучшего формирования шва, обеспечивает необходимые качества сварного соединения. При сварке же легированных сталей как в металле шва, так и в зоне термического влияния могут произойти такие структурные превращения, которые окажут существенное воздействие как на прочностные, так и на пластические свойства сварного соединения. Поэтому удовлетворительное формирование швов является необходимым, но  [c.500]

Под технологическими свойствами сварочной дуги понимают совокупность ее теплового, механического и физико-химического воздействия на свариваемый материал, определяющую интенсивность плавления электрода, характер переноса электродного металла, проплавление основного металла, формирование и качество шва. К технологическим свойствам дуги относят также ее пространственную устойчивость и эластичность. Технологические свойства дуги взаимосвязаны и зависят от параметров режима сварки.  [c.32]

В книге описаны электрические, магнитные и тепловые свойства сварочной дуги изложены данные о конструкциях современных сварочных автоматов и полуавтоматов для сварки под флюсом и в атмосфере защитных газов приведены краткие сведения по устройству и обслуживанию источников питания дуговой сварки освещены вопросы сварки цветных металлов и сплавов описаны методы контроля и испытания сварных соединений и конструкций.  [c.223]

Сварка этих видов сталей затруднена по раду причин. В процессе сварки происходит частичное выгорание легирующих примесей и углерода. Вследствие малой теплопроводности возможен перегрев свариваемого металла. Эти стали отличает повышенная склонность к образованию закалочных структур, а больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряжения, связанные с тепловым влиянием дуги. Причем, чем больше в стали углерода и легирующих примесей, тем сильнее проявляются эти свойства. Для устранения влияния перечисленных причин на качество сварного соединения рекомендуется  [c.277]

При необходимости учесть распределенность теплоты, например, от сварочной дуги, по глубине металла можно принять нормальный закон распределения по аналогии с формулой (5.33). В общем случае использования различных сварочных источников теплоты вопрос о распределенности теплового потока по толщине металла должен решаться каждый раз конкретно в зависимости от свойств самого источника и его взаимодействия со свариваемым металлом. В первом приближении о характере распределения вводимой энергии можно судить по форме проплавления. На рис. 5.14, а. б. в показаны формы провара в электрошлако-вых сварных соединениях в зависимости от расположения и характера перемещения сварочных проволок в зазоре. Случай  [c.156]

Значительно больше световая отдача электрических дуг, положительный кратер которых имеет температуру около 4000 К. В дугах интенсивного горения, (сила тока до 300 А) температура кратера достигает 5000 К, а в дугах под давлением около 20 ат Люммеру удалось довести температуру кратера до 5900 К, т. е. получить источник, близкий по своим световым свойствам к Солнцу. В обычных дугах главная часть излучения (от 85 до 95%) излучается положительным кратером, около 10% — катодом и лишь 5% приходится на свечение облака газов между электродами. В дугах интенсивного горения, в которые вводятся тугоплавкие соли некоторых элементов с большой испускательной способностью (редкие земли), роль облака повышается и на долю кратера приходится всего 40—50% общего излучения. Хотя, по-видимому, в таких дугах излучение носит почти исключительно тепловой характер, все же в силу большой селективности излучения элементов, вводимых в состав облака, световая отдача подобных источников оказывается выше, чем для раскаленного угля и металлов.  [c.709]


Сопловое парораспределение, уступая дроссельному по экономичности на расчетном режиме, превосходит его на режимах частичных нагрузок. Вместе с тем сопловому парораспределению присущи и определенные недостатки, снижающие тепловую экономичность, надежность и маневренные свойства турбины. Эти недостатки в основном связаны с неизбежным применением парциального впуска пара, в том числе при номинальном режиме (табл. Vni.l). Снижение тепловой экономичности обусловлено, как уже отмечалось, вентиляционными потерями и потерями на выколачивание па краях дуг подвода пара, а также выбором для регулировочных ступеней значений ы/Со, меньших оптимальных. Определенные потери вызваны дросселированием пара вследствие необходимости перекрытия клапанов. Кроме того, в процессе эксплуатации иногда имеются дополнительные потери от дросселирования пара в регулировочных клапанах. Главная часть этих потерь обусловлена не выбранным типом парораспределения, а нерациональным рас-  [c.140]

Если в окрестности точки Го(л ,, у,) дуга кривой с гладка и на этой дуге функции ф 1 ( , х) непрерывны, то на основании свойств тепловых потенциалов [Л. 34] и используя формулу (9-6-25). -имеем  [c.464]

При плазменной наплавке в отличие от аргонодуговой наплавки электрическая дуга сжимается стенками водоохлаждаемого сопла. Газ, продуваемый сквозь эту дугу, приобретает свойства плазмы - становится ионизированным и электропроводящим. Слой газа, соприкасающийся со стенками сопла, интенсивно охлаждается, утрачивает электропроводность и выполняет функции электрической и тепловой изоляции, что приводит к уменьшению диаметра плазменной струи, который составляет 0,7 диаметра сопла.  [c.302]

На процесс плазменной резки оказывает влияние большое количество различных технологических факторов, в том числе расход плазмообразующей среды, скорость ее истечения из сопла, диаметр и длина канала сопла, сила тока и напряжение режущей дуги и другие. Большинство из них влияет на качественные показатели плазменной резки ширину реза величину скоса кромок шероховатость кромок и наличие грата величину тепловых деформаций, связанных с напряжениями в кромках реза структурные и химические изменения металла изменения механических свойств металла кромок. Ниже рассматривается влияние расхода плазмообразующего газа и скорости его истечения на качество плазменной резки.  [c.57]

На основании проведенных экспериментов следует считать, что на интенсивность процесса плазменной резки, а следовательно, и на форму кромок в значительной степени оказывают влияние конструктивные размеры канала сопла, а также расстояние между соплом и электродом. Анализируя полученные данные, можно заметить сходство процессов, происходящих в рассмотренных в п. 2.3 вариантах плазменной резки. Во-первых, в том и другом случае (при увеличении длины канала сопла и удалении сопла от электрода) обеспечивается лучшая фокусировка столба дуги. Во-вторых, высокая кинетическая энергия в дуге в том и другом случае достигается не за счет прохождения большого объема газа, а вследствие увеличения скорости истечения плазмы при повышении давления газа в полости сопла. В случае использования сопла с удлиненным каналом происходит задержка газа в канале сопла и в межэлектродном пространстве. Дуга оказывает более интенсивное воздействие на его ионизацию, т. е. полнее используются теплофизические свойства газа. В случае увеличения расстояния между электродом и соплом увеличенный отрезок столба дуги, находящийся в полости сопла, создает более интенсивный тепловой обмен с находящимся в прикатодном пространстве газом. Происходит предварительный подогрев газа. Положительное влияние предварительного подогрева газа было отмечено исследователями в работах [10, 88]. Попадая в канал сопла, газ уже имеет начальную температуру, поэтому он легче и полнее ионизируется, обеспечивая высокие тепловые  [c.62]

Дуга представляет собою процесс, одновременно электрический и тепловой. Поэтому естественно, что условия охлаждения дуги влияют иа ее свойства, в частности, на ее вольтамперную характеристику.  [c.24]

Кристаллизация металла шва. Кристаллизация жидкого металла при охлаждении начинается с не полностью оплавленных зерен основного металла, расположенных на границе расплавления, к решетке которых и пристраиваются атомы кристаллизующейся фазы. После затвердения металла шва (кристаллизации) на участках расплавления образуются зерна, состоящие частично из основного металла и металла шва, обеспечивающие в сварном соединении непрерывную металлическую связь основной металл —шов — основной металл . При движении сварочной дуги вдоль свариваемых кромок в передней части ванны происходит процесс плавления, а в тыльной — процесс кристаллизации. Таким образом происходит формирование сварного шва. Протяженность сварочной ванны зависит от типа источника тепла, ero тепловой мощности, режимов сварки и теплофизических свойств свариваемого материала.  [c.52]

Теплофизические свойства материала коэффициент теплопроводности X = 37,5 ккал м час - град коэффициент температуропроводности а = 0,02988 MP-j40 коэффициент теплообмена между окружающей средой, температура которой Т(, = 0° С, и поверхностью листа (х = 19,08 ккал1м час град. Начальная температура листа = 0° С. Валик наплавляется вдоль всей кромки листа со средней скоростью V = 15,48 м/час. Эффективная тепловая мощность дуги = 2376 ккал1час.  [c.418]

Применение инертных газов существенно повышает стабильность дуги. Значительное различие теплофизических свойств защитных газов и применение их смесей, изменяя тепловую эффективность дуги и условия ввода теплоты в свариваемые кромки, значительно расширяют технологические возможности дуги. При сварке в инертных газах наблюдается минимальный угар легирующих элементов, что важно при сварке высоколегированных сталей. При сварке в защитных газах возможности изменения химического состава металла шва более Офаничены по сравнению с другими способами сварки и возможны за счет изменения состава сварочной (присадочной) проволоки или изменения доли участия основного металла в образовании металла шва (режим сварки), когда составы основного и электродного металлов значительно различаются.  [c.374]


Л = onst. В этом случае дуга ведет себя как линейное активное сопротивление. Однако, как уже указывалось, случай 6 = 0 физически нереален, поскольку соответствует бесконечно большой тепловой инерции столба дуги. При 6 0 начинают проявляться нелинейные свойства дуги как элемента электрической цепи, в частности, отличие формы кривой и от синусоидальной тем большее, чем больше 6.  [c.200]

Применение инертного и малотеплопронодного аргона в сочетании с тугоплавким вольфрамовым электродом обеопечивает защитные свойства среды и высококонцентрированную, стабильную тепловую мощность дуги.  [c.158]

Наряду со свойствами аргона высокая тепловая мощность дуги и широкий диапазон плотностей тока обеспечиваются применением в качестве электрода-катода тугоплавкого вольфрама, преимущественно торированно-го, который, будучи нагретым до высоких температур без значительного испарения, расплавления и деформаций, дает возможность получать необходимый для разряда ток.  [c.180]

Термический цикл основного металла при сварке. В результате теплового воздействия дуги металл изделия в точках на самом шве или вблизи него претерпевает нагрев и охлаждение. Характер нагрева и охлаждения разных точек различен и зависит от их расположения. Каждый участок металла подвергается особой термической обработке, в результате которой меняется его струкгура. Совокупность участков основного металла, в которых в результате воздействия источника тепла изменилась структура или свойства, называют зоной термического влияния. Иногда термическое воздействие сварки мало отражается на свойствах сварного изделия, но чаще ухудшает свойства околошовной зоны.  [c.153]

Наиболее важным з ни.х является. интенсивное тепловое воздействие дуги, в результате которого на кромках реза образуется пленка оплавленного металла, а в массе детали возникает быстро перемещающееся вместе с дугой температурное поле. Температурный градиент этого поля наиболее высок в плоскости дуги (перпендикулярно резу). Здесь на сравнительно малом расстоянии, определяемом в основном свойствами металла и скоростью резки, температура падает от точки плавления (на кромках) до температуры окружающей среды. Позади этой плоскости температурное поле расширяется и выравнивается, что завершается равномерным нагревом всей детали до некоторой температуры, постепенно снижающейся до исходного состояния. В результате нагрева и последующего охлаждеьия наряду с оплавлением металла происходит изменение его структуры. Неравномерность нагрева может вызвать появление местных напряжений, в отдельных случаях (при обра-зован и хрупких структур) сопровождающихся возникновением трещин. Тепловое воздействие сопровождается также, как это было указано выше, термодиффузионными процессами в металле, обусловливающими образование внутренней химической неоднородности.  [c.139]

Азот при сварке меди может применяться как инертный газ, (он не растворяется в меди и не реагирует с ней). Тепловая мощность дуги при защите азотом значительно больше, чем при защите дуги аргоном. Однако следует учитывать, что вольфрамовые электроды являются нестойкими в атмосфере технического азота, поставляемого промышленностью и содержащего до 3—4% Оа-Такое ко.тчссгао кислорода при сваркс медных сплавов плавящимся электролом не вызывает недопустимого ухудшения свойств металла швов, но при сварке вольфрамовым электродом приводит к его окислению, плавлению и попаданию в ванну включений вольфрама. Стойкость вольфрамовых электродов с торием значительно выше, чем чисто вольфрамовых, но тоже недостаточна. В этих случаях требуется либо дополнительная очистка азота от кислорода, либо применение специальных горелок с комбинированной газовой защитой. При такой защите вольфрамовый электрод омывается маломощной струей аргона, предохраняющего его от непосредственного контакта с азотом, а основная защитная струя, защищающая сварочную ванну и нагретый конец присадочного металла, формируется из азота. Такая защита целесообразна и по техническим, и по экономическим соображениям.  [c.247]

Заточка вольфрамового электрода (рис. 7) влияет на технологические свойства дуги. При уменьшении диаметра притупления повышается концентрация теплового потока, растет давление дуги и плотность тока. При сварке электродом, имеюшим притупление, вероятность появления непроваров из-за несоосности электрода и линии стыка снижается.  [c.98]

Основные методы вспытавий. При функционировании робота определяются точностные, кинематические, динамические, виброакустические, тепловые параметры и мощность. Данные табл. 6.2 свидетельствуют о том, что для этих испытаний при их унификации необходим сравнительно небольшой набор датчиков. Дополнительные испытания проводятся в связи с технологическим назначением робота и более подробным исследованием его свойств [28]. Они включают измерение электрических параметров и температуры сварочных головок, кабелей и дуги, контроль качества контактной и дуговой сварки, окраски, лазерной обработки и т. п., контроль надежности захватывания и удерживания заготовок и инструмента. Наиболее трудоемки точностные испытания, так как они проводятся многократно (10 —25 раз и более) при движении захвата в двух направлениях и при различных начальных й конечных положениях, различной траектории движения при совместной работе ряда двигателей, а также длительно, с определенной периодичностью для изучения влияния прогрева и других медленно изменяющихся факторов.  [c.80]

В энергетическом отношении атомно-водо-родпая сварка является в основном методом электрической сварки, при котором обратимые физико-химические процессы, протекающие в газовой атмосфере вольтовой дуги, способствуют наиболее эффективному развитию и использованию её тепловой мощности. Независимость источника тепла в сочетании с возможным широким диапазоном регулирования тепловой мощности пламени непосредственно в процессе сварки создает большую гибкость технологического процесса. Высокая температура атомно-водородного пламени позволяет применять его для сварки наиболее тугоплавких металлов. Восстановительные свойства молекулярного и особенно атомного водорода и его химическое взаимодействие с азотом являются условиями для наиболее эффективной защиты расплавленного металла от окисления и нитрирования.  [c.318]

Однако во многих важных практических задачах частицы имеют неправильную форму. Например, частицы, которые вводятся в газ для защиты ракетных двигателей от теплового излучения, частицы в перспективных ядерных реакторах и аэрозоли, вызывающие загрязнение атмосферы, не являются сферическими. В таких случаях экспериментальный метод является единственным способом определения поглощательных и рассеивающих свойств облака частиц, взвешенных в газе. В литературе были описаны некоторые эксперименты по определению радиационных свойств облака частиц неправильной формы. Ланцо и Рэгсдейл [97] измерили поглощение теплового излучения тугоплавкими частицами микроскопических размеров, взвешенными в потоке воздуха, в зависимости от их размера и концентрации. Поток воздуха, содержащий частицы угля, поглощал больше энергии излучения от электрической дуги, чем ноток без частиц. Беркиг [98] исследовал поглощение излучения частицами угля, железа и карбида тантала размером менее микрона, содержащимися в гелии и водороде, а Лав [99] определил индикатрису рассеяния и коэффициент ослабления для частиц окиси алюминия размером порядка микрона в интервале длин волн от 4 до 6 мкм. В работах Уильямса [100, 101] были представлены экспериментальные значения коэффициентов ослабления и индикатрис рассеяния на частицах вольфрама, кремния, угля, карбида вольфрама и карбиДа кремния размером менее микрона. Согласно его результатам, рассеяние такими частицами происходит преимущественно вперед.  [c.129]


При производстве, дюнтаже и ремонте паровых котлов, трубопроводов и сосудов применяют электродуговую, газовую н контактную сварку металлов [36]. Процесс сварки сопровождается изменением структуры и свойств в зоне соединения и возникновением поля остаточных напряжений [12]. Для большинства методов сварки характерным является приложение концентрированных электрически.х, газовых или механических источников энергии непосредственно в зоне соединения. При электродуговой марке необходимая для нагрева и расплавления тепловая энергия обеспечивается электрической дугой при контактной сварке — выделяется за счет электросопротивления свариваемых деталей или зоны контакта деталей. Применяют также индукционный нагрев токами высокой частоты. При газовой сварке металл нагревается пламенем горючего газа (или паров ке-)осина), сжигаемого в кислороде при помощи сварочной горелки, (аждый способ сварки имеет много разновидностей [35, 36].  [c.145]

Необходимость введения прокладки определена в результате исследований механизма функционирования электрода. Они показали, что окислы, образующиеся на рабочей поверхности гафниевой вставки, плохо смачивают стенки эрозионного кратера и не защищают их от воздействия теплового потока столба дуги. В результате наступает момент, когда падающий на стенки кратера тепловой поток от столба дуги вызывает расплавление части медного держателя. Образующаяся при этом жидкая медь окисляется и может попасть в эмитирующий материал в виде окислов. Температуры кипения окислов меди значительно ниже, чем гафния, вследствие чего они интенсивно кипят, унося окислы гафния и разрушая защитную пленку на его поверхности. Вследствие этого ресурс работы электрода исчерпывается после использования гафниевой вставки по высоте всего на 25 %. Чтобы повысить ресурс электрода, осуществлено коронирование стенок кратера тугоплавким материалом, обладающим плохой смачиваемостью и низкими эмиссионными свойствами (в частности, алюминиевой фольгой, которая наиболее полно отвечает указанным требованиям).  [c.159]

Плазменное напыление — это такой способ нанесения металлических покрытий, при котором для расплавления и переноса металла на поверхность детали используются тепловые и динамические свойства плазменной дуги (рис. 17.7). В качестве плазмообразующего газа применяют азот. Азотная плазма имеет сравнительно невысокую температуру (до 10... 15 тыс. °С), но обладает высокой энтальпией (теплосодержанием). Это объясняется тем, что процесс образования азотной плазмы имеет две стадии диссоциа-  [c.124]


Смотреть страницы где упоминается термин Тепловые свойства дуги : [c.258]    [c.303]    [c.230]    [c.25]    [c.241]    [c.46]   
Смотреть главы в:

Сварочное дело в строительстве Издание 2  -> Тепловые свойства дуги



ПОИСК



Вес дуги

Пар Тепловые свойства

Тепловые свойства дуги. Плавление и перенос металла

Тепловые свойства сварочной дуги

Электрические и тепловые свойства дуги



© 2025 Mash-xxl.info Реклама на сайте