Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аргон Свойства

Наплавка плавящимся и неплавящимся электродами в среде защитных газов, прежде всего аргона. Свойства наплавленного слоя здесь зависят от материала присадки (при наплавке неплавящимся, например вольфрамовым, электродом) или электрода (при наплавке плавящимся электродом).  [c.523]

Аргон — Свойства 2 — Физические константы 16 Атмосферы, контролируемые при нагреве стали 222, 224 Атомный вес химических элементов 15  [c.539]

При сварке неплавящимся электродом на переменном токе сочетаются преимущества дуги на прямой и обратной полярностях. Однако асимметрия электрических свойств дуги, обусловленная ее меньшей электрической проводимостью при обратной полярности по сравнению с прямой, приводит к ряду нежелательных явлений. В результате выпрямляющей способности дуги появляется постоянная составляющая тока прямой полярности. В этих условиях дуга горит неустойчиво, ухудшается очистка поверхности сварочной ванны от тугоплавких оксидов и нарушается процесс формирования шва. Поэтому для питания дуги в аргоне переменным током при-  [c.196]


Наплавка плавящимся и неплавящимся электродом в среде защитных газов. Наплавку вольфрамовым электродом проводят в среде аргона. Необходимые свойства наплавленного металла обеспечиваются применением присадочных проволок специального состава или вдуванием легирующих порошков в зону дуги.  [c.91]

По теплофизическим свойствам гелий существенно отличается от аргона. Он имеет высокий потенциал ионизации (24,5 вместо 15,7 эВ) и в 10... 15 раз большую теплопроводность при температурах плазмы. Кроме того, он легче аргона примерно в 10 раз. Достаточная для существования дуги ионизации аргона при п 10 ионов/см наступает примерно при 16 000 К, в то время как для гелия — при 25 ООО К. Все эти особенности существенно влияют на свойства W-дуги в гелии. Например, добавление к аргону гелия постепенно превращает конусную дугу в сферическую (рис. 2.55, а). Пинч-эффект в гелиевой плазме практически не имеет места до весьма больших плотностей тока, так как значительная теплопроводность гелия дает низкий температурный градиент по радиусу столба и весьма высокое внутреннее давление р = nkT.  [c.101]

Титан, а также цирконий и ниобий, содержащие водород, утрачивают свои пластические свойства, а сварка их становится невозможной. Поэтому массовая доля водорода в титане, предназначенном для ответственных конструкций, ограничивается 0,002...0,004%, и, кроме того, не допускается присутствие водорода в зоне сварки (сварка электронным лучом или в камерах с контролируемой атмосферой). При аргоно-дуговой сварке тщательно организуется защита металла сварочной ванны, остывающего до 773 К металла шва, и защищаются нижние кромки сварного соединения.  [c.347]

Аргон и гелий не образуют химических соединений с металлами. Точно так же азот не взаимодействует с некоторыми металлами — медью, кобальтом и др. Поэтому процессы окисления, азотирования, наводораживания, а также растворения газов и вредных примесей в сварочной ванне связаны с несовершенством газовой защиты зоны сварки и проникновением в нее атмосферного воздуха. Кроме этого, наличие даже небольших концентраций вредных примесей в инертных газах, окисленных поверхностных слоев на кромках металла и сварочной проволоки, способствует образованию оксидов, нитридов и других соединений, заметно снижающих физико-механические свойства сварных соединений.  [c.385]


Наиболее употребительный защитный инертный газ — аргон, так как он значительно дешевле, чем гелий, а также обладает лучшими защитными свойствами.  [c.386]

Сварка алюминиевых и магниевых сплавов требует уже аргона повышенной чистоты (марок А или Б), а также тщательной разработки технологии подготовки свариваемых кромок и электродной проволоки из-за опасности появления пористости сварных соединений. Это определяется физико-химическими свойствами металлов.  [c.387]

При сварке меди и ее сплавов получение качественного шва — без пор, с требуемыми физическими свойствами — весьма затруднительно. Это связано с наличием в исходном металле закиси меди и высокой склонности меди к поглощению водорода. Возможна сварка меди и ее сплавов в защитных газах — аргоне и гелии, а также в азоте, который по отношению к этому металлу является инертным газом. Сварку ведут неплавящимися электродами — вольфрамовым и угольным (не для всех марок меди) на постоянном токе прямой полярности с подачей присадочной проволоки.  [c.388]

Широкое применение нашли ртутные лампы, обладающие свойством создавать как линейчатые, так и сплошные спектры с заметной интенсивностью линий. Ртутная лампа представляет собой баллон из стекла или кварца, наполненный инертным газом (например, аргоном) и парами ртути в малых количествах (несколько миллиграммов). Под действием разряда инертного газа внутри лампы, возникшего при зажигании, возбуждаются пары ртути и наблюдается их свечение. Давление паров ртути внутри лампы высокого давления достигает примерно 700 мм рт. ст. Эти лампы дают в основном яркий линейный спектр в видимой и ультрафиолетовой областях.  [c.377]

В отличие от идеального газа модельное термомеханическое вещество отображает все особенности реальных веществ оно имеет линии идеального газа, Бойля, Джоуля-Томсона, Джоуля. Изотерма, проходящая через его критическую точку, претерпевает перегиб, а частные производные (йр/йу),, и (б р/бу ),. в ней ровны нулю. Высокие модельные качества термомеханического вещества подтверждены также результатами количественных сопоставлений его свойств со свойствами реальных атомных веществ — неона, аргона, криптона и ксенона. Найдено, например, что в его критической точке = 8/27 = 0,296. По обобщенным опытным данным [2] значения составляют для неона  [c.56]

Рассмотрим теперь опытные свойства адрон-адронных столкновений. Адрон-адронные столкновения являются основным источником информации о механизме сильных взаимодействий, т. е. о динамических свойствах адронов. Другие экспериментальные возможности изучения динамических свойств адронов будут приведены в п. 11. По причинам, изложенным в гл. IX, 2, 3, на ускорителях экспериментально исследованы только столкновения рр до энергии 60 ГэВ в СЦИ и столкновения л р, К р, рр до энергии около 20 ГэВ в СЦИ. Начато исследование столкновений S p. Столкновения пр исследованы лишь до менее высоких энергий. Исследуются также высокоэнергичные столкновения адронов с ядрами и ядер с ядрами. Например, в Дубне изучаются столкновения ядер аргона друг с другом при Е 1,5 ГэВ/нуклон в СЦИ. В космических лучах регистрировались события, являющиеся последствиями адрон-адронных столкновений существенно более высоких энергий. Однако извлечение из этих данных четкой информации о механизме взаимодействия сильно затруднено тем, что в космических лучах имеют дело с природным наблюдением, а не с контролируемым экспериментом.  [c.374]

Рис. 4.3.3. Излучательные свойства молибдена в зависимости от температуры а — интегральная полусферическая степень черноты, б — интегральная нормальная степень черноты, в — спектральная для Х=0,65 мкм степень черноты (О — опыты в вакууме, — опыты в аргоне, А — первоначальный нагрев) Рис. 4.3.3. Излучательные свойства молибдена в зависимости от температуры а — интегральная <a href="/info/147759">полусферическая степень черноты</a>, б — интегральная нормальная <a href="/info/19023">степень черноты</a>, в — спектральная для Х=0,65 мкм <a href="/info/19023">степень черноты</a> (О — опыты в вакууме, — опыты в аргоне, А — первоначальный нагрев)

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]

Характерной для газов является зависимость р от произведения ph (закон Пашена). Такие установленные экспериментально зависимости для воздуха, водорода, аргона и неона показаны на рис. 5.33. Для каждого из газов имеет место свое минимальное U р, которое зависит от свойств материала катода. Чем выше работа выхода электрона с металла, тем больше t/пр- Для разных газов минимальное и р лежит в пределах 200—300 В, для воздуха оно равно 330 В (для промежутка с медными электродами).  [c.174]

Существуют циклы, построенные на использовании одного и того же неизменного по количеству рабочего тела. Такие циклы называются замкнутыми. Принципиальная тепловая схема одного из замкнутых циклов простейшего типа изображена на рис. 32-8. В качестве рабочего тела в этих циклах может быть использован воздух или другой газ, характеризуемый более благоприятными для цикла термодинамическими свойствами (более высокой теплоемкостью, большими показателями адиабаты, коэффициентом теплоотдачи, объемной массой и др.), например гелий, аргон, водород, фреон.  [c.376]

Влияние температуры на механические свойства литого бария чистотой 99,9 % показано на рис. 31. Понижение пластичности бария при 400—600 °С вызвано воздействием внешней среды — технического аргона.  [c.74]

Свойства РЗМ, как правило, определяли на загрязненных металлах, содержащих до нескольких процентов примесей, а испытания проводили в средах, оказывающих Влияние на эти металлы, что совершенно недопустимо из-за их высокой химической активности анализ проводили с целью определения металлических примесей, а этого недостаточно. Поэтому механические испытания не выявляли истинных свойств металлов. Лишь в последние годы у РЗМ обнаружена высокая пластичность после тщательной очистки и испытаний в вакууме 10- Па в очищенном аргоне.  [c.75]

Влияние температуры на механические свойства определено лишь па загрязненном гольмии (чистотой 97,8 %) при испытании в неочищенном аргоне, поэтому получены низкие значения [1]  [c.82]

ТАБЛИЦА 37. СВОЙСТВА НИОБИЯ С 1 В. АТМОСФЕРЕ АРГОНА ПРИ 1000 С  [c.106]

ТАБЛИЦА 39. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СВОЙСТВА СПЕЧЕННОГО ТАНТАЛА ТЕХНИЧЕСКОЙ ЧИСТОТЫ ПОСЛЕ ХОЛОДНОЙ ПРОКАТКИ И ОТЖИГА ПРИ ИСПЫТАНИИ В АРГОНЕ  [c.108]

Даже при кратковременных высокотемпературных испытаниях в недостаточно чистом аргоне или при некачественном вакууме такие факторы, как продолжительность нагрева, длительность выдержки в нагретом состоянии, скорость испытания, существенно влияют на глубину насыщения молибдена газами и на механические свойства.  [c.125]

Другие технологические свойства. Обрабатываемость режущего инструмента отличная. Сплав удовлетворительно сваривается аргоно-дуговой сваркой.  [c.157]

Диэлектрические свойства жидких газов высоки е = 1,05- 1,4 электрическая прочность = 300 335 кв см. Таким образом, жидкий гелий, водород, неон, аргон, азот являются хорошими диэлектриками и могут применяться в качестве среды для испытания.  [c.51]

Рис. 49. Механические свойства стали различных способов выплавки при скручивании образцов диаметром 8 мм, длиной 100 мм в зависимости от температуры испытаний в аргоне. Состав стали плавок 2, 3, 5, 6 см. в табл. 51. Сталь после нормализации с 860° С. Сплошные линии — среднее значение плавок 2 и 3, штриховые линии — для плавок 5—6 (данные Л. Н. Давыдовой) Рис. 49. <a href="/info/58648">Механические свойства стали</a> различных способов выплавки при скручивании образцов диаметром 8 мм, длиной 100 мм в зависимости от <a href="/info/28878">температуры испытаний</a> в аргоне. <a href="/info/696742">Состав стали</a> плавок 2, 3, 5, 6 см. в табл. 51. Сталь после нормализации с 860° С. <a href="/info/232485">Сплошные линии</a> — <a href="/info/51699">среднее значение</a> плавок 2 и 3, <a href="/info/1024">штриховые линии</a> — для плавок 5—6 (данные Л. Н. Давыдовой)
Рис. 175. Пластические свойства при растяжении и кручении продольных (о) и поперечных (б) образцов в атмосфере аргона в зависимости от температуры отпуска электростали (штриховые линии) и МСШ (сплошные линии) после нормализации при 860° С. Образцы на растяжение диаметром 5 мм, длиной 31 мм, на кручение — диаметром 10 мм, длиной 50 мм, скорость вращения 60 об/мин. Образцы вырезаны из проката диаметром 14Р мм. Средние данные по четырем плавкам каждой стали [88, с. 114] Рис. 175. <a href="/info/274178">Пластические свойства</a> при растяжении и кручении продольных (о) и поперечных (б) образцов в атмосфере аргона в зависимости от <a href="/info/233686">температуры отпуска</a> электростали (<a href="/info/1024">штриховые линии</a>) и МСШ (<a href="/info/232485">сплошные линии</a>) после нормализации при 860° С. Образцы на <a href="/info/460917">растяжение диаметром</a> 5 мм, длиной 31 мм, на кручение — диаметром 10 мм, длиной 50 мм, <a href="/info/108847">скорость вращения</a> 60 об/мин. Образцы вырезаны из проката диаметром 14Р мм. Средние данные по четырем плавкам каждой стали [88, с. 114]

Установлено, что наилу чший уровень механических свойств псевдосплавов обеспечивается пропиткой в среде аргона. Свойства псевдосплавов Fe- u в значительной мере зависят от степени дефектности структуры. Материалы из взаиморавновесных фаз обладают более совершенным строением межфазных фаниц и, соответственно, более высокими показателями прочности и пластичности. Наряду с применением только двух компонентов для пощ чения псевдосплавов Fe- u в качестве составляющих используют сплавы железа и меди с другими элементами. Так, тугоплавкий каркас изготовляют из смеси порошков железа и фафи-та, железа и марганца. Железтто основу легируют также Мо, Ni, Zn, Со, А1 и др. Для пропитки применяют сплавы меди с Мл, Zn, Sn, Al, o.  [c.125]

При применении заш,итных газов следует учитывать технологические свойства газов (нанри.мер, значительно больший расход гелия, чем аргона), влияние на форму проплавления и форму шва и стоимость газов,  [c.121]

Добавки в углекислый газ аргона (иногда в эту смесь вводят кислород) изменяют технологические свойства дуги (глубину проплавдения и форму шва, стабильность дуги и др.) и позволяют регулировать концентрацию легирующих элементов в металле шва.  [c.225]

Весьма благоприятные металлургические условия при сварке высокохромистых сталей создает сварка в инертных защитных газах, как правило, в аргоне и в некоторых смесях на его основе. Причем в основном используют сварку неплавящимся вольфрамовым электродом, а присадочный материал подбирают аналогичным желаемому составу наплавленного металла. При этом виде сварки в шоп удается вводить почти без потерь такие весьма активные элементы (улучшающие свойства металла шва), как титан и алюминий. Однако по причинам понижения производительности сварки и ее низкой экономичности применение этого метода обычтю ограничивается изготовлением изделий малых толщин и выполнением корневого валика в многослойных швах металла больших толщин, например в изделиях турбостроения.  [c.265]

При сварке плавящимся электродом за два прохода (с двух сторон) можно сваривать металл без скоса кромок толщиной до 36 мм. В качестве защитного газа используют аргон и гелий (табл. 106), При сварке за два прохода в аргоне швы получаются относительно более узкими (рис. 164, а), а в гелии — более широкими (рис. 164, е), что связано с физическими свойствами защитных газов при сварке в гелии требуется более высокое паиряже-нне дуги. Сварку ведут на постоянном токе обратной полярности.  [c.366]

Свариваемость — ограниченная. Удовлетворительные механические свойства можно получить при сварке изделий, имеющих небольшие толщины до 2—3 мм. Для автоматической электродуговой сварки под флюсом АН-26 и АНФ-14 применяют проволоку Св-08Х20Н9Г7Т и Св-05Х25Н12ТЮ. Сталь успешно сваривается аргоно-дуговой сваркой без присадочного материала и с применением в качестве присадочного материала проволоки из стали 10Х18Н10Т. Для малых сечений применяют контактную сварку.  [c.480]

В/мм н2 >0 В/мм (при / =10 А). Следовательно, при одинаковом токе в аргоновой дуге выделяется на 1 мм ее длины меньше энергии IE, чем в других. Во-вторых, энтальпия (объемное теплосодержание) аргоновой плазмы при температуре этой плазмы также значительно меньше (рис. 2.60), чем плазмы азота или водорода (для N2— 16 Аг — 3 Hj— 12 кВт/м при Т— 10 000 К). Однако температура плазмы существенно зависит от свойств плазмообразующего газа для Аг и Не = = 15 ООО...25 ООО К, что в 3...4 раза выше, чем для N2 и Иг = = 5000...7ООО К). Подходящим газом для стабилизации дуги может быть азот (или воздух, содержащий до 78% азота), так как его энтальпия при 7" = 10 ООО К в 5 раз больше энтальпии аргона и, кроме того, азот значительно дешевле.  [c.104]

Кислород — вредная прймесь в металле при сварке, снижающая пластические свойства металла, поэтому при всех видах сварки предусматривается процесс раскисления металла шва до допустимой нормы. При сварке металлов высокой активности (А1, Ti, Zr) следует создавать бескислородную атмосферу — аргон, гелий, вакуум, галидные флюсы, так как раскислителей для таких металлов подобрать нельзя.  [c.403]

В настоящем издании справочника приведены основные физические характеристики металлов атомная масса, атомный радиус, число электронов в атоме (атомный номер) и их строение по сравнению со строением благородных газов (гелия — is , неона—[He]2s 2p , аргона — [Ме]3з 3/) криптона— [Ar]Зii °45 4p ксенона— [Kr]4d 5s25pe р . дона [Xe]4/ 5d 6s 6p ), электроотрицательность, ионизационный потенциал, плотность, температуры плавления и кипения. Дополнительно приведены краткие сведения о ресурсах металлов, точности и достоверности определения свойств материалов, сверхиластичностн и электропластичности металлов.  [c.6]

Другие технологические свойства. Обрабатываемость режушим инструме 1-том отличная. Применение аргоно-дуго-вой сварки затруднительно.  [c.156]


Смотреть страницы где упоминается термин Аргон Свойства : [c.45]    [c.46]    [c.60]    [c.264]    [c.72]    [c.196]    [c.80]    [c.81]    [c.175]    [c.180]    [c.72]    [c.128]    [c.197]    [c.220]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.390 ]

Теплотехнический справочник том 1 издание 2 (1975) -- [ c.245 ]



ПОИСК



Аргон

Аргон Термодинамические свойства

Аргон Физико-химические свойства

Аргон — Свойства 2 — Физические

Аргон — Свойства 2 — Физические константы

Аргон, термодинамические свойства газового иона

Аргон, термодинамические свойства на линии насыщения

Аргон, термодинамические свойства при высоких давлениях

Исследования некоторых физических свойств плазменной струи аргона

Калорические свойства жидкого аргона

СПЛАВЫ Соединения стыковые при сварке аргоно-дуговой — Механические свойства

Сварка в углекислом сплавов титановых — Сварка аргоно-дуговая — Механические свойства

Соединения сварные из порошков алюминиевых спеченных — Механические свойства 108—110 —Электросварка аргоно-дуговая — Режимы

Сплавы В Механические алюминиево-магниевые — Механические свойства 202 — Рекристаллизация — Диаграммы 336 — Соединения стыковые — Сварка аргоно-дуговая — Режимы

Термодинамические свойства аргона в однофазной области

Термодинамические свойства жидкого аргона Анализ экспериментальных термических данных для жидкого аргона и их пополнение

Термодинамические свойства жидкого аргона в состоянии насыщения (по давлениям)

Термодинамические свойства жидкого аргона в состоянии насыщения (по температурам)



© 2025 Mash-xxl.info Реклама на сайте