Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные виды сварных соединений и типы шва

Основные виды сварных соединений и типы шва  [c.274]

Сварное соединение является элементом сварной конструкции. К сварному соединению относят участки деталей или отдельные детали, соединенные сварным швом. Под сварным швом понимают затвердевший после расплавления металл, соединяющий кромки деталей. При выполнении сварного соединения эти кромки подвергаются определенной подготовке. Взаимное расположение свариваемых частей, форма и размеры кромок после подготовки определяют вид сварного соединения и тип шва. Основные типы сварных швов в зависимости от вида соединений, в которых эти швы применены, размеры и форма швов, а также конструктивные элементы подготовки кромок деталей под сварку регламентируются ГОСТ 5264—58 Швы сварных соединений. Ручная дуговая сварка. Основные типы и конструктивные элементы . ГОСТ устанавливает также условные знаки различных швов при их графическом или буквенно-цифровом обозначении (табл. 39).  [c.97]


Испытания образцов проводятся при нормальной и рабочей температуре [3] эксперименты выполняются на лабораторных ударных копрах. Объектом исследования в сварном соединении является металл шва и зона сплавления. Для сравнительной оценки ударной вязкости этих зон с основным металлом дополнительно испытываются аналогичные прямоугольные образцы из основного металла с надрезом-концентратором вида U- и V-образного типа с обозначением ударной вязкости K U и K V для основного металла, соответствующих обозначению д и а 45 для зон сварного соединения.  [c.160]

Швы сварных соединений конструкций из углеродистых и низколегированных сталей, выполняемые ручной, автоматической и полуавтоматической сваркой под флюсом, а также их условные обозначения йа чертежах стандартизованы (табл. 1). Стандарты устанавливают основные типы сварных швов в зависимости от вида соединения, размеры и форму шва, а также конструктивные элементы подготовки кромок свариваемых деталей и их допуски. В табл. 2—4 приводятся данные по некоторым основным типам и конструктивным элементам сварных соединений и швов ручной сварки, а в табл. 5—8 — автоматической и полуавтоматической сварки под флюсом.  [c.31]

Сварка горячим лезвием. Схема сварки приведена на рис. 447. Для нагрева сварочной зоны применяют электронагреватели типа паяльников, электроутюгов, обогреваемых роликов. Между свариваемыми изделиями < , 4 помещают плоский электронагреватель /. Как только изделия нагреются до размягчения, электронагреватель удаляют, а зону сварки сдавливают прижимным роликом 2. В результате получают плотное и прочное соединение. Основной вид сварного шва — внахлестку. Этот способ применяется для тонколистовых термопластов и пленочных материалов. Пленочные материалы сваривают с помощью обогреваемых роликов.  [c.668]

Так же, как и для других способов сварки, для сварки в защитных газах в ГОСТ 14806-80 для каждого типа сварного шва указаны все основные размеры скоса кромок и размеры шва. В некоторых видах швов односторонних стыковых соединений, выполняемых на весу, а также угловых, тавровых и нахлесточных соединений, приведенных в этом стандарте, допускается непровар корня шва.  [c.88]

Механические свойства сталей и сплавов определяются их химическим составом, структурой и отсутствием или наличием различного типа дефектов. Вьппе бьши рассмотрены основные типы и виды дефектов, характерные для сварных соединений. В настоящем разделе остановимся на рассмотрении ряда особенностей, связанных с неоднородностью химического состава и структуры сварных соединений, которые определяют механические характеристики металла шва, зоны термического влияния, зоны сплавления и других локальных участков. При этом необходимо иметь в виду, что развитие дефектов происходит именно в данных участках, а работоспособность сварных соединений определяется комплексом сложных процессов, связанных с механическими характеристиками металла различных зон, геометрическими размерами последних, видом и условиями нагружения, типом дефекта и др.  [c.13]


Основные ТИПЫ, конструктивные элементы, размеры и условные обозначения сварных соединений стандартизованы (табл. 16.20). Условное буквенно-цифровое обозначение стандартного шва имеет вид С1, С2, СЗ,. . ., У1, У2, УЗ,. . ., Т1, Т2, ТЗ,. . ., Н1, Н2, НЗ и т. д.  [c.417]

На рис. 292 показан вид коррозионного разрушения 17%-ной хромистой стали в сварном соединении, а на рис. 96—структура металла в переходной зоне, основного металла и металла шва. По границам зерен крупных кристаллов в зоне, смежной со швом, видны выделения структуры мартенситного типа.  [c.509]

Дефекты в сварных соединениях возникают прежде всего из-за нарушения режима сварки [18, 120]. Сварочные дефекты наряду с конструктивными концентраторами образуют один из видов присущей сварным соединениям неоднородности — геометрическую неоднородность. Неоднородность в целом зависит от теплофизического и химико-металлургического воздействия сварки. Одним из наиболее распространенных типов дефектов сварного соединения является непровар (местное отсутствие сплавления между свариваемыми элементами, металлом шва и основным металлом, а также между отдельными слоями шва), который возникает вследствие снижения тока, увеличения напряжения и скорости сварки, чрезмерного увеличения угла наклона электрода "вперед". Подрез (углубление на основном металле вдоль линии сплавления шва с основным металлом) является следствием повышенной скорости сварки, низкого напряжения дуги и неточного направления электрода по оси стыка. При заполнении сварочным шлаком непроваров и подрезов образуются шлаковые включения. Также включения могут образовываться при сварке многослойных швов на участках, где очистка поверхности предыдущего слоя шва была выполнена недостаточно тщательно или при попадании в сварочную ванну посторонних частиц.  [c.25]

Швы сварных соединений. Автоматическая и полуавтоматическая сварка под флюсом. Основные типы и конструктив>1ые элементы. Стандарт распространяется на сварные швы, выполняемые автоматической и полуавтоматической сваркой под слоем флюса па конструкциях из углеродистых и низколегированных сталей. Стандартом устанавливаются условные обозначения способов сварки, основные типы швов в стыковых, тавровых, угловых соединениях и в соединениях внахлестку в зависимости от формы подготовки кромок и характера выполнения шва. Указывается вид в поперечном сечении подготовленных кромок и выполненных швов в зависимости от толщины свариваемого металла, графическое и буквенно-цифровое обозначение типов швов. Приведены размеры конструктивных элементов швов с допускаемыми отклонениями от них и обозначения швов на чертежах.  [c.484]

В зависимости от типа и назначения изделия видоизменяются и конкретизируются требования, предъявляемые к сварным соединениям. Поэтому их нельзя сформулировать в общем виде. Можно лишь утверждать, что любому сварному соединению должна быть обеспечена достаточная работоспособность при минимальной трудоемкости его изготовления. Под достаточной работоспособностью сварного соединения в большинстве случаев подразумевают сохраняемую в течение всего срока эксплуатации необходимую и достаточную прочность, выносливость и устойчивость при заданных виде нагружения и рабочей среде. Прочность сварного соединения определяется механическими свойствами металла шва и околошовной зоны, надлежащей для данных условий согласованностью свойств этих участков и основного металла, стойкостью против перехода в хрупкое состояние, конфигурацией шва и его размерами, наличием и характером дефектов.  [c.172]

Стандарт устанавливает основные типы сварных швов в зависимости от вида соединения, в котором эти швы применены, размеры и форму полученного шва, а также конструктивные элементы подготовки кромок свариваемых деталей  [c.538]

При конструировании сварной аппаратуры необходимо правильно назначить способ сварки, выбрать тип шва, определить подготовку кромок. Способ сварки выбирается в зависимости от материала свариваемых частей, их геометрических размеров и от оснащенности завода. Основными способами можно считать электродуговую автоматическую сварку под слоем флюса, а также полуавтоматическую и ручную дуговые сварки. По типу сварного шва применяются соединения встык, втавр и внахлестку. Основным и лучшим видом сварного соединения пищевых аппаратов является стыковой шов. Обработка кромок перед сваркой зависит от метода сварки и толщины свариваемых листов. Чаще всего применяются бесскосные швы, V-образные швы с подрубкой кромок и швы с подкладкой.  [c.138]


Холодные трещины являются одним из видов локального разрушения сварных соединений. При образовании холодных трещин определяющими являются три фактора закалочные структуры, повышенный уровень напряжений первого рода и насыщенность металла водородом [42]. Установлено, что процесс образования холодных трещин включает три стадии подготовительную, инкубационную и спонтанного разрушения. Первые две стадии характеризуют процесс зарождения, а третья — процесс распространения трещин. По данным В. Ф. Мусияченко, холодные трещины зарождаются по границам действительного зерна аустенита в результате высокотемпературной пластической деформации, при которой увеличивается плотность подвижных дислокаций и возрастает упругая энергия искажений структуры. Последующее возникновение субмикротрещин является результатом проскальзывания по границам зерен и диффузии вакансий к границам. Водород и сера, снижающие поверхностную энергию границ зерен, способствуют росту полостей и субмикротрещин. ГОСТ 26388—84 предусматривает применение машинных либо технологических методов выбора рациональных режимов сварки углеродистых и легированных сталей — основного металла в ЗТВ и металла шва. Машинный метод основан на доведении металла сварного соединения до образования холодных трещин при внешней постоянно действующей нагрузке после сварки в процессе охлаждения в интервале 150—100 °С. При технологических методах испытания определяют условия образования холодных трещин под действием остаточных сварочных напряжений. Приложение нагрузки к образцам при машинных. методах осуществляют растяжением либо изгибом со скоростью 5—10 МПа/с, причем под нагрузкой образцы выдерживают в течение 20 ч. Испытанию подвергают 30 образцов одного типа при различных нагрузках и устанавливают минимальное значение нагрузки, при которой 126  [c.126]

Высокие температуры, используемые при сварке плавлением, с одной стороны, понижают термодинамическую устойчивость оксидов, как это было показано в п. 9.2, но, с другой стороны, скорость их образования резко увеличивается и за очень небольшое время сварочного цикла металлы поглощают значительное количество кислорода. Поглощенный кислород может находиться в металле или в растворенном состоянии в виде оксидов (обычно низшей степени окисления), или субоксидов (TieO, TisO, Ti20), а также может создавать неметаллические включения эндогенного типа, образовавшиеся при раскислении металла более активными элементами. И то, и другое резко снижает качество сварных соединений, особенно пластичность металла шва. Исследования этого вопроса показали, что основная масса кислорода в металле обычно находится в неметаллических включениях [20]. Источниками кислорода в металле при сварке служат окислительно-восстановительные реакции между металлом и атмосферой сварочной дуги, металлом и шлаками, образующимися в результате плавления флюсов или при разложении и плавлении компонентов электродного покрытия, а также при взаимодействии с наполнителями порошковой проволоки.  [c.317]

Метод сварки выбирается с учетом материала свариваемых элементов, сложности выполняемой работы и степени ответственности объекта. В основном используется сварка плавящимся электродом. Применяются ручная, полуавтоматическая и другие виды сварки. Технологический процесс сварки должен обеспечивать достаточно высокие качества шва прочность соединения и плотность металла. Наиболее высокое качество обеспечивается сваркой в среде защитных газов. Углеродистые и низколегированные стали обычно свариваются в среде углекислого газа, коррозионно-стойкие стали типа 08XI8H10T свариваются с применением аргонодуговой сварки. В наиболее ответственных случаях используется сварка ненлавящимся электродом. Сварка может осуществляться с применением всех промышленных методов, обеспечивающих полное проплавление шва и требуемое качество сварных соединений. Необходимо в максимальной степени использовать автоматические и полуавтоматические методы сварки.  [c.207]

Коррозия ножевого типа, возникающая в сварных соединениях сплавов вдоль линии сплавления шва с основным металлом, нагревающимся при сварке до температур выше 1250 °С (рис. 3.011), как правило, развивается в том случае, когда в структуре закаленного металла наблюдается значительное количество карбидной фазы типа МвС и М12С в виде ликвационных строчек (рис. 3.011, б). Растворение данной фазы при температурах выше 1250 °С, перераспределение углерода и выделение при  [c.176]

Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 MMjeod). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав-  [c.185]


Поэтому сварное соединение представляет собой сложную фнзико-химическую, механическую и электрохимическую макро- и микрогетерогенную систему со следующими характерными видами неоднородности структурно-химической макро- н микронеоднородностью зон (основной металл, литой металл шва, переходные зоны термического и термомеханическ ого влияния и т. д. в пределах каждой зоны) неоднородностью напряженного состояния — собственного (остаточные сварочные напряжения и пластические деформации) и от внешней нагрузки геометрической неоднородностью, обусловленной наличием технологических концентраторов (граница шва и основного металла, дефекты формы шва — подрезы, непровары и др.) и конструктивных концентраторов, определяемых типом сварного а динения 11  [c.494]

Сварные соединения, которые, как клеевые и формованые соединения, основаны на техническом состоянии слипания и рассматриваются как частный сл) ай адгезии [1], можно условно отнести к группе адгезионных соединений (см. главу 1). Основные их признаки — исчезновение границы раздела между соединяемыми поверхностями и образование переходного слоя с однородной или разнородной по отношению к материалам деталей структурой. Это дало основание называть их аутогезионными соединениями [2, с. 30]. Сварное соединение — сочетание деталей в сборочном узле, выполненное посредством сварки. Свойства сварных соединений зависят от типа полимерного материала, их конструкции, условий нагружения, выбранного способа сварки. В зависимости от взаимного расположения соединяемых деталей различают стыковые, нахлесточные, раструбные, тавровые, муфтовые, встык с накладками, угловые и др. сварные соединения [3 4, с. 31]. Каждый из этих видов может иметь различное исполнение в зависимости от конструкции деталей, типа ПМ и выбранного способа сварки. Участок сварного соединения, непосредственно связывающий элементы изделия, называют сварным швом. Прочность связи между свариваемыми материалами, как и когезия [5], обусловливается возникающими в зоне шва силами межатомного и межмолекулярного взаимодействия.  [c.324]

Приведенные ниже (табл. 111.2) стандарты устанавливают основные типы сварных соединений в них приведены характеристики и взаимосвязь вида соединения, формы подготовительных кромок, характера выполненного шва, формы поперечного сечения кромок н шва, пределы толш,ин свариваемых деталей, а также условные обозначения способа сварки и шва сварного соединения. Примеры таких характеристик даны в табл. 111.3.  [c.36]

Обозначения основных положений (табл. III.9) сварных швов и соединений всех видов и типов, выполненных сваркой плавлением, регламентированы ГОСТ 11969—66. При иользовании основной таблицей этого стандарта следует руководствоааться следующим нулевое положение осей сварного шва—это горизоатальное положение продольной оси и вертикальное (направленное вверх) положение поперечной оси. Сварной шов может иметь угол наклона а от О до 90° (между продольной осью шва и его нулевым положением) угол поворота Р от О до 180° (между поперечной осью сечения шва со своим нулевым положением).  [c.43]

Швы сварных соединений конструкций из углеродистых и низколегированных сталей, выполняемые сваркой плавлением (газовой, дуговой электросваркой, т. е. ручной, автоматической и полуавтоматической сваркой под флюсом и т. д.), а также их условные обозначения на чертежах гтяндартизованы. Стандарты устанавливают основные типы сварных швов в зависимости от вида соединения, размеры и форму шва, а также конструктивные элементы подготовки кромок свариваемых деталей и их допуски.  [c.15]

Во многих случаях хорошие результаты достигаются применением средств механизации контроля. При ручном контроле сварных соединений система может осушествлять объективность накопления информации за счет регистрации и отображения самого факта проведения контроля, полноты проверки объема сварного шва, околошовных зон и (или) основного металла, визуализацию дефектов в виде изображений типа Б и С в реальном времени.  [c.259]

При низких температурах изменяются механические свойства наплавленного металла. Однако критическая температура хрупкости сварного шва, выполненного электродами типа Э42 и, особенно, типов Э42А, Э46А или Э50А, ниже, чем у основного м еталла, что обеспечивает надежную работу сварных швов при низких температурах. Необходимо иметь в виду, что при низких температурах надежно работают только те сварные соединения, которые не имеют концентраторов напряжений. Этими концентраторами могут быть дефекты в сварном шве или конструктивные дефекты. При наличии концентраторов и понижении температуры может произойти хрупкое разрушение конструкций даже от остаточных сварочных напряжений (см. главу XII).  [c.110]

Допускаемые напряжения для сварных соединений [ст ] определяют умножением допускаемых напряжений для основного металла [ст] на коэффициент прочности ф, учитываюш,ий отрицательное влияние сварки. При полном проваре по всей толш,ине, проведении в необходимых случаях термической обработки и контроле качества шва по всей длине неразрушаюш,ими методами ф = 1 для углеродистой, низколегированной марганцовистой и хромомолибденовой сталей, сталей типа 12Х18Н10Т и им подобных ф = 0,8 для хромомолибденованадиевой и высокохромистой сталей. Коэффициент прочности стыковых соединений углеродистой и низколегированной марганцовистой сталей, контроль качества которых неразрушающими методами производится не по всей длине, принимается в зависимости от способа сварки ф = 0,85 при автоматической двусторонней сварке под флюсом, электрошлаковой сварке, контактной сварке, односторонней ручной и автоматической сварке под флюсом на подкладке или с подваркой корня шва, ручной сварке в СОа или аргоне ф = 0,7 при всех других, не указанных выше видах сварки.  [c.186]

Акустико-эмиссионные иснытания образцов сталей эксплуатировавшихся трубонроводов. Испытывали образцы, вырезанные при ремонтных работах из труб газопроводов, эксплуатировавшихся от 15 до 25 лет. Деформирование проводили на испытательной машине типа "Инстрон" с постоянной скоростью деформации, равной 1 мм/мин. Испытьтали образцы как основного металла, так и вырезанные из зоны сварного шва. Основные результаты испытаний таковы. Начальная стадия деформирования однородных образцов не сопровождается регистрируемой АЭ. По мере приближения к пределу текучести начинает резко возрастать непрерывная АЭ, которая остается высокой вплоть до стадии упрочнения, когда она весьма резко спадает практически до нулевого уровня. В это время начинается рост дискретной АЭ, частота следования импульсов которой возрастает. На конечном участке диаграммы деформирования исчезает и этот вид АЭ, а непосредственно перед разрушением образца, на этапе лавинного развития повреждения, снова возникает всплеск дискретной АЭ. Результаты испытаний образцов, вырезанных из зоны сварного соединения, практически не отличаются от результатов для образцов из основного металла, если по данным анализа поверхности разрыва образца отсутствуют явные дефекты сварки. Для дефектных образцов можно наблюдать непрерывную АЭ, а также существенные и нерегулярные ее изменения на стадии упрочнения. По-видимому, это связано с началом пластической деформации разных локальных зон образца в различные моменты времени, что обусловлено неоднородностью материала. Других особенностей АЭ в дефектных образцах не обнаружено.  [c.248]



Смотреть страницы где упоминается термин Основные виды сварных соединений и типы шва : [c.55]    [c.462]    [c.528]    [c.63]    [c.38]    [c.187]    [c.346]    [c.724]    [c.136]    [c.38]    [c.235]    [c.217]    [c.283]    [c.302]   
Смотреть главы в:

Детали машин Издание 2  -> Основные виды сварных соединений и типы шва



ПОИСК



33, 229, 249, 251 — Основные типы

Виды основные

Виды соединений

Основные виды соединений

Основные соединения

Сварные Основные виды

Сварные Типы основные

Сварные соединения основные типы

Соединения — Типы

Типы сварных соединений

Типы сварных соединений. Сварные швы

Типы соединени



© 2025 Mash-xxl.info Реклама на сайте