Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Превращения в стали при нагреве. Образование аустенита

Превращение в стали при нагреве (образование аустенита). Нагрев стали при термической обработке применяют, как правило, для получения структуры аустенита. Структура доэвтектоидной стали с содержанием углерода менее 0,8% (см. 3, рис. 9, ll) при нагреве ее до критической точки Ас состоит из зерен перлита и феррита. В точке А происходит превращение перлита в мелкозернистый аустенит. При дальнейшем нагреве от точки Ас до Лсз избыточный феррит растворяется в аустените и при достижении Лсз (линия G5) превращения заканчиваются. Выше точки Лз структура стали состоит только из аустенита.  [c.18]


Превращения в стали при нагреве. Образование аустенита  [c.82]

При нагреве выше критической точки в результате возникновения центров кристаллизации (на границе феррита и цементита) и их роста из перлита образуется аустенит. Это образование обусловлено диффузией, поэтому состав аустенита существенно отличается от феррита и цементита. При равновесных условиях фазовые превращения в стали при нагреве протекают в соответствии с диаграммой состояния Fe—РедС (рис. 5.1).  [c.89]

Превращения в стали при нагреве (условия образования аустенита). Цель нагрева стали при термической обработке — перевести ее структуру в аустенит. Струк-  [c.120]

Превращения в стали при нагреве (условия образования аустенита). Нагрев стали при термической обработке в большинстве случаев имеет целью перевод ее структуры в аустенит. Структура доэвтектоидной стали при нагреве до точки Ас,  [c.125]

Превращения в стали при нагреве. При нагреве выше точек Лсд в доэвтектоидных сталях, Ас в эвтектоидной и Аст в заэвтектоидных сталях происходят фазовые превращения, заканчивающиеся, как это следует из диаграммы состояния Ре—РедС, образованием аустенита. До нагрева эти стали имеют соответственно структуры перлита и феррита, перлита или перлита и вторичного цементита. При нагреве до указанных температур протекают два процесса аллотропическое превращение Ре в Ре с образованием аустенита и растворение в аустените избыточных составляющих в доэвтектоидных сталях— феррита, а в заэвтектоидных — вторичного цементита. После этого  [c.171]

При сварке или наплавке околошовная зона имеет участки, нагреваемые выше точек Ас, и Асч начала и конца образования аустенита. Эти превращения, сопровождающиеся изменение . объема, характерны для всех марок стали. Однако изменение объема у малоуглеродистой стали всегда происходит при температурах выше 600°, когда сталь находится в пластическом состоянии, и предел упругости ее близок нулю. Поэтому происходящие объемные изменения не сопровождаются образованием напряжений в металле. Зависимость объемных изменений в стали при нагреве и охлаждении от температуры показана на фиг. 109.  [c.209]

В доэвтектоидной стали в нормализованном состоянии кинетика образования аустенита тормозится из-за содержания, кроме перлита, структурно свободного феррита, что существенно задерживает превращения. Металлографическое исследование показывает, что в этом случае при нагреве со скоростями 10—1000° С/с до температур, близких к 910° С, на участках структурно свободного феррита образования устойчивых зародышей не происходит. В этих условиях превращение феррита в аустенит протекает за счет роста аустенитных зародышей, возникших на месте перлита, при одновременной диффузии углерода из бывших перлитных зон. Если к моменту достижения 910° С участки феррита еще остаются, то в них образуются зародыши аустенита и происходит полиморфное превращение в аустенит. Однако для достижения оптимальных свойств в этом случае требуется дополнительный нагрев, обеспечивающий равномерное распределение углерода за счет диффузии. Для доэвтектоидной нормализованной и отожженной стали это может произойти значительно выше 910° С (табл. 7).  [c.607]


Превращения при нагреве (условия образования аустенита). Нагрев стали при термообработке в большинстве случаев имеет целью перевод ее в аустенит. Структура доэвтектоидной стали при нагреве до точки критической Ас1 состоит из зерен перлита и феррита (рис. 26). В точке Лс] начинается фазовая перекристаллизация перлита, который превращается в мелкозернистый аустенит. При нагреве доэвтектоидных сталей от температур Ас до Ас феррит растворяется в аустените. В заэвтектоидной стали при нагреве выше точки Лс перлит превращается в аустенит, а при дальнейшем нагреве вторичный цементит растворяется в аустените. Выше точки Лсз будет только аустенит.  [c.74]

Рассмотрим превращения феррито-цементитной смеси (перлита) в аустенит яа примере эвтектоидной (0,8% С) стали. При нагреве до температуры Асх происходит растворение в феррите некоторого количества цементита в соответствии с линией предельной растворимости РО (рис. 92,а). При повыщении температуры выше Ас, например до ь концентрация углерода в отдельных участках феррита возрастает (точка г на рис. 92,а). Такие участки феррита неустойчивы и претерпевают превращение в аустенит, стабильный при данной температуре. Как видно из рис. 92,а, аустенит при температурах несколько выше Ас (727°С) содержит 0,8°/о С. Образование зародышей аустенита с таким содержанием углерода возможно благодаря флуктуациям концентрации углерода в феррите. Зародыши аустенита образуются на границе раздела феррита и цементита (рис. 92,/), где наличие дефектов уменьшает работу образования зародыша аустенита и больше вероятность флуктуационного возникновения в феррите участков критического размера с содержанием -0,8% С.  [c.177]

Рис. 94. Схема структурных изменений эвтектоидной стали при нагреве а — перлитная структура б — начало образования аустенита в — конец полиморфного превращения и растворение цементита г — гомогенизация аустенита Рис. 94. <a href="/info/2014">Схема структурных</a> изменений <a href="/info/125265">эвтектоидной стали</a> при нагреве а — перлитная структура б — начало образования аустенита в — конец <a href="/info/138486">полиморфного превращения</a> и растворение цементита г — гомогенизация аустенита
Механизм возникновения структурных напряжений можно представить следующим образом. Околошовная зона подвергается нагреву до температур, превышающих A i и A g . В интервале этих температур имеет место аустенитное превращение, связанное с уменьшением удельного объема (рис. 141, кривая /). Низкоуглеродистые стали при этих температурах пластичны, и происходящие объемные изменения не сопровождаются образованием напряжений в металле. При охлаждении распад аустенита у низкоуглеродистых сталей происходит примерно в том же интервале температур, вследствие чего и это фазовое превращение не вызывает возникновения внутренних напряжений (рис. 141, Кривая 2).  [c.354]

Структурные превращения вызывают растягивающие и сжимающие напряжения в связи с тем, что они в некоторых случаях сопровождаются изменением объема свариваемого металла. Например, у углеродистых сталей при нагреве происходит образование аустенита из феррита этот процесс сопровождается уменьшением объема. При больших скоростях охлаждения высокоуглеродистых сталей аустенит образует мартенсит-ную структуру, менее плотную, чем аустенит этот процесс сопровождается увеличением объема. При сварке низкоуглеродистой стали напряжения, возникающие от структурных превращений, небольшие и практического значения не имеют. Стали, содержащие более 0,35% углерода, и большинство склонных к закалке легированных сталей дают значительные объемные изменения от структурных  [c.60]

При непрерывном нагреве стали образование аустенита происходит в определенном интервале температур и чем быстрее, тем шире этот интервал и больше скорость превращения перлита в аустенит.  [c.90]

Изменения свойств стали при закалке являются результатом образования неравновесных структур мартенсита, тростита, сорбита. Закалка основана на фазовых превращениях при нагреве и охлаждении. Быстрое охлаждение стали при закалке предотвращает превращение аустенита в перлит, вследствие чего и образуется одна из промежуточных структур распада аустенита мартенсит, тростит или сорбит. Применяя различные охладители при закалке, можно подобрать определенную скорость охлаждения, необходимую для получения требуемых структуры и свойств.  [c.118]


Структура и свойства сталей мартенситного класса зависят от содержания С и Сг. Так, стали с низким содержанием С (-<0,10%) и д повышенным содержанием Сг (>15%) являются ферритными и не закаляются, поскольку не протекает превращение Стали с содержанием С-<10% и Сг<15% при нагреве приобретают структуру аустенита, а при охлаждении происходит превращение о образованием мартенсита. Химический состав и назначение мартенситных сталей приведены в табл. 15.1.  [c.264]

При остывании легированной стали распад аустенита в зависимости от ее химического состава и скорости остывания может начаться при низких температурах (гораздо ниже, чем при его образовании при нагреве) с переходом аустенита в мартенсит, образование которого связано с резким увеличением объема. Так как в этом случае объемные деформации происходят при температурах, когда металл находится в упругом состоянии, то эти структурные превращения приводят к образованию остаточных напряжений.  [c.211]

При дополнительном нагреве стали в интервале 700—800° С завершается превращение аустенита с образованием феррита и карбидов хрома с выравниванием концентрации твердого раствора хрома за счет диффузионных процессов. При этом значительно понижаются прочность и твердость материала, а также естественно снимаются структурные напряжения в стали.  [c.20]

Аустенит стали любого состава при достижении 723° С содержит 0,83% углерода (точка 5). В результате превращения при дальнейшем охлаждении из аустенита образуется механическая смесь из феррита и цементита (при нагреве из феррито-цементитной смеси образуется аустенит). Это превращение, подобно эвтектическому, протекает при постоянной температуре (723°), соответствует определённому фазовому составу (0,83% С) и отличается от эвтектического образованием смеси не из жидкого расплава, а из твёрдого раствора. Превращение названо эвтектоидным, а образующаяся смесь—перлитом.  [c.321]

Превращение при закалке. Критическая точка (начало образования аустенита) для стандартного состава стали РФ1 лежит при тем-. пературе около 800° С. При нагреве до 900° С в структуре ещё сохраняется а-фаза. Выше 900—950° С структура состоит из аустенита и карбидов. Повышение температуры ведёт к растворению карбидов (фиг. 69) и к росту зерна аустенита (фиг. 70, см. вклейку).  [c.456]

Для описания процесса перехода ферритно-цементитной структуры в аустенитную часто пользуются диаграммами изотермического образования аустенита, дающими представление о протекании превращения при различных температурах. Для построения диаграммы небольшие образцы из исследуемой стали, например эвтектоидной (0,8 % С), быстро нагревают до заданной температуры, лежащей выше точки и выдерживают при этой  [c.158]

Основная особенность образования аустенита заключается в том, что из двухфазной смеси феррита (около 0,02 % С) и цементита (6,67 % С) при нагреве образуется одна фаза - аустенит со средним содержанием углерода в стали. Поэтому процесс перестройки решетки а-твердого раствора в решетку 7-фазы усложняется накладывающимися на него процессами диффузии. То, что диффузия играет большую роль при образовании аустенита, не вызывает сомнений. Дискуссия происходит вокруг вопроса о том, что осуществляется раньше аллотропическое превращение и затем диффузионное перераспределение углерода или же сначала перераспределение углерода в а-фазе, а потом перестройка решетки.  [c.5]

В работе [14] для стали 40 бьшо определено содержание углерода в мартенсите после высокочастотной закалки от разных температур. При этом бьшо обнаружено, что при закалке от 800°С, когда равновесной концентрации аустенита соответствует 0,35 % С, содержание углерода в основной массе кристаллов колебалось от 0,14 % при скорости нагрева 50°С/с до 0,05 % при скорости нагрева 200°С/с. Обе эти концентрации гораздо ниже равновесной, причем в данном случае существование малоуглеродистого аустенита не может быть объяснено его образованием при более высокой температуре, поскольку температура нагрева фиксировалась. Эти данные свидетельствуют о том, что при закалке регистрировалась стадия а 7-превращения, когда карбиды не успели раствориться и в связи с этим аустенит еще не насытился углеродом.  [c.10]

Для стали 30 при 800°С в этой работе бьш зафиксирован аустенит с периодом 03647 нм, что соответствует содержанию углерода около 0,5 %. Авторы, считая, >гго эта концентрация близка к определяемой по диаграмме Fe- для данной температуры, пришли к выводу о реализации в любых условиях нагрева диффузионного механизма, приводящего к образованию стабильного аустенита, и о применимости для описания фазового превращения равновесной диаграммы даже при нагреве со скоростью 500 - 600°С/с [ 3].  [c.11]

Превращения в стали при нагреве (условия образования аустенита). Цель нагрева стали при термической обработке — получение структуры аустенита. Структура доэвтектоидной стали при нагреве до точки Лс, состоит из зерен феррита и перлита (рис. 44). В точке начинается фазовая перекристаллизация перлита, который превращается в мелкозернистый аустенит. При нагреве сплава от температур Л , до Ас феррит растворяется в аустените. Взаэвтектоидной стали при нагреве выше точки Ас, перлит превращается в аустенит, а при дальнейшем нагреве цементит растворяется в аустените. Выше точки Ас будет только аустенит. Образование аустенита обеспечивает перестройку а-железа в - --железо с растворением в нем углерода.  [c.101]

Описанная схема превращения в стали при нагреве соответствует очень медленному повышению температуры, т. е. условиям, близким к равновесию. Эта схема важна в том отношении, что она знакомит нас с общим характером превращений. Рднако на практике нагревание стали производится значительно быстрее, и в связи с этим процесс образования аустенита-происходит более сложно.  [c.105]

В мартен ситно-стареющих сталях при нагреве до температур >550°С может произойти обратное мартенситное превращение а->у. По аналогии с точкой Мн температуру бездиффузионного образования аустенита обозначают Ав, а конец превращения Лк. Это обратное мартенси гнор превращение протекает с большой скоростью и сопровождается, как и прямое, образованием рельефа на полированной поверхности шлифа. При образовании аустенита в ем растворяются ранее выделившиеся из а-фазы ннтерметаллиды (у -фаза) в тем большей степени, чем выше температура.  [c.304]


Для всех остальных железоуглеродистых сплавов (рис. 61) распад аустенита с образованием перлита соответствует линии Р5Л (723°). Условились температуру (критическую точку), отвечак -щую образованию перлита при охлаждении, называть Лгь а превращению перлита в аустенит при нагреве—Ас (точка 5—Л1)-Рассмотрим превращения, происходящие при охлаждении из области твердого раствора (аустенита) в стали, содержащей менее 0,8% С (д оэ в т е кт о и д-н ы е стали).  [c.94]

При нагреве с большой скоростью и, как следствие, при большой скорости охлаждения (например, при точечной сварке) кривая охлаждения (кривая О на фиг. 37) не пересекается с кривой начала перлитного превращения в стали. В результате этого при охлаждении стали ниже температуры, соответствующей точке Л1, произойдет мартенситное превращение, и сталь полностью закалится. При охлаждении стали до промежуточной кривой В в точке начинается образование троостита, которое не успевает завершиться. Часть нераспавшегося аустенита при охлаждении ниже температуры Ж переходит в мартенсит. При этой скорости охлаждения сталь будет иметь структуру неполной закалки, состоящую из троостита закалки и мартенсита.  [c.62]

Результаты экспериментов представлены на рис. 6.1 в виде диаграмм анизотермического образования аустенита в условиях сварочного нагрева. Как видно, для всех исследованных сталей отмечаются закономерное повышение критических температур и расширение межкритическЛ о интервала при увеличении интенсивности нагрева. Наиболее значительное расширение температурного интервала процесса а—7 превращения характерно для стали 15МФ, легированной химическими элементами, образующими устойчивые карбиды. Отмеченное объясняется как повышением температурного порога растворения карбидов, так и существенным понижением диффузионной подвижности углерода в присутствии молибдена и ванадия.  [c.107]

Под влиянием содержащегося в стали углерода замкнутая область аустенита расширяется, граница области аустенита сдвигается в сгорону большего содержания ферритообразующих элементов. Например, сталь 12X17 с Сг = 17 %, С = 0,12 % является ферритной, а сталь 95X18 с Сг = 17 % и С = 1 % является мартенситной, при нагреве имеет структуру легированного аустенита, который при охлаждении на воздухе превращается в мартенсит. Действие аустенитообразующих элементов проявляется в повьппении точки А и снижении точки А , что способствует образованию открытой области аустенита. При достаточно большом содержании никеля или марганца аустенит оказывается устойчивым при 20 25 °С. Углерод и азот (после отжига стали) не сохраняют аустенит при 20 - 25 °С из-за эвтектоидного превращения аустенита в сплавах железа с углеродом или азотом. Углерод и азот в сочетании с никелем или марганцем. увеличивают устойчивость аустенита настолько, что аустенитная структура сохраняется при 20 - 25 ° С при меньшем содержании никеля или марганца по сравнению с тем, которое нужно для сохранения аустенита при 20 - 25 °С в отсутствие углерода и азота.  [c.26]

Структурные превращения вызывают растягивающие и сжимающие напряжения в связи с тем, что они в некоторых случаях сопровождаются изменениями объема свариваемого металла. Например, у углеродистых сталей при нагреве происходит образование аустенита из феррита. Этот процесс сопровождается некоторым уменьшением объема. При больших скоростях охлаждения металла шва у вьюо-коуглеродистых сталей аустенит образует структуру менее  [c.157]

Критические точки, соответствующие температурам превращения, указаны на диаграмме /li(727° ) точка Аз, понижающаяся с увеличением содержания углерода по линии GS и точка Лс , изменяющаяся по линии SE. Смещение критических точек относительно температур, соответствующих равновесному состоянию сплавов, происходящее вследствие теплового гистерезиса, в реальных условиях нагрева и охлаждения условно обозначакзт так A i, Асз — при нагреве, Аг- , Аг — при охлаждении. Для практики термической обработки стали изучение механизма и кинетики образования аустенита имеет большое значение, поскольку превращение аустенита при  [c.112]

Исследование рельефа мартенситного превращения стали Х12Н5М4К9 в литом и в аустенизированном по разным режимам состояниях показало определяющее влияние концентрационной неоднородности на устойчивость остаточного аустенита в микрообъемах по границам и телу зерна. После однократной аустенизации при 840° С, 5 мин и охлаждения рельеф - а-превращения наблюдается но телу зерна, в местах, где при нагреве фиксируется рельеф а -превращсния. В приграничных областях ( проталинах ), характеризующихся повышенной концентрацией аустенитостабилизирующих элементов, рельеф не образуется (рис. 3, а). Еще два нагрева до 850° и один до 960°С продолжительностью каждый по 5 мин с последующим охлаждением до 20° С практически не привели к изменению структуры проталин (рис. 3, б). Только выдержка 1,5 ч при 960° С привела к образованию мартенситного рельефа в проталинах .  [c.114]

Ступенчатая закалка. При выполнении закалки но этому спо собу (рис.. 139, а) сталь после нагрева до температуры закалки охлаждают в среде, имеюп1,ей температуру несколько выше точки Мд (обычно 180—250 °С), и выдерживают в ней сравнительно короткое время. Затем изделие охлаждают до нормальной те.мие-ратуры на воздухе. В результате выдержки в закалочной среде достигается выравнивание температуры по сечению и.зделпя, но это не должно вызывать превращения аустенита с. образованием бейнита.  [c.213]

С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в у-железе, существующего при высоких температурах (750...1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влиянця (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени KdiZUbdiKiX термическш циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами.  [c.29]

В книге рассмотрены современные представления о фазовых и структурных превращениях при нагреве стали и чугуна. Проанализировано влияние исходного состояния и условий нагрева на кинетику и морфологию образования аустенита, его строение и свойства. Рассмотрен механизм а -> -превращения с общих пози-Щ1Й о возникновении метастабильных состояний, развития релаксащюнных явлений и вторичных процессов при фазовых переходах. Особое внимание уделено роли дефектов кристаллического строения в образовании аустенита и их влиянию на формирующуюся структуру, размер зерна и свойства металла после термической обработки.  [c.2]


Известно также значительное количество работ, в которых были предприняты попытки прямого определения состава 7-фазы в момент ее формирования. Большинство измерений проведено в условиях скоростного нагрева, когда, как справедливо считали авторы, затруднены диффузионные процессы, что давало надежду зафиксировать раздельно эффект перестройки решетки и последующее растворение карбидной фазы и насыщение аустенита углеродом, если процесс образования аустенита действительно происходит в две стадии. Однако трактовка результатов этих работ затруднена значительным смещением в область более высоких температур регистрируемого начала а -> 7-превращения при скоростном нагреве. Так, в работе [ 13] о составе 7-фазы судили по температуре мартенситного превращения, которая, как известно, зависит от содержания в аустените углерода. Бьшо показано, что после скоростного нагрева до 850 - 870°С в сталях У8, У12, ШХ15 фиксируются две мартен-ситные точки одна в районе 500 — 600°С, что соответствует малоуглеродистому аустениту (0,1 - 0,2 % С), вторая около 300°С, что соответствует 7-фазе с содержанием углерода 0,6 — 0,7 %. Однако, поскольку температура образования малоуглеродистого аустенита в этой работе не зафиксирована, его можно рассматривать либо как метастабильное состояние, либо, как это делают авторы, объяснять его происхождение смещением температуры его образования до 850 - 870 С, при которой концентрация 0,1 — 0,2 % С соответствует линии GS равновесной диаграммы.  [c.10]

Следует отметить, что сопоставление состава аустенита, экспериментально определяемого при данной температуре, с концентрахщей, соответствующей линии GS равновесной диаграммы, в условиях скоростного нагрева нельзя считать правомерным. Дело в том, что диаграмма состояния характеризует состав сосуществующих при данной температуре фаз для их равновесного количества. При 780°С аустенит в стали 30 будет содержать 0,4 % С, если его количество, в соответствии с диаграммой, достигнет примерно 70 %. В условиях же скоростного нагрева при 780°С появляются, по словам авторов, первые признаки аустенита [3], что связано со смещением в область более высоких температур инструментального начала а -> 7-превращения. По данным В.Н. Гриднева, это должно отвечать примерно 10 % 7-фазы. Таким образом, в данном случае равновесная диаграмма состояния количественно не описывает процесс образования аустенита. При скоростном нагреве одновременно с A i повышается и температура окончания а -> 7-превращения, т.е. смещается вверх и линия GS. Это хорошо видно из рис. 2 при скоростном нагреве а-фаза исчезает при температуре выше 900°С, тогда как равновесное значение Асз для стали 30 800°С. Естественно, что сравнивать состав аустенита, возникшего в таких неравновесных условиях, когдаеговсего 10вместо 70 %, с концентрацией, соответствующей равновесному положению линии GS, нельзя.  [c.12]

Температуры нагрева были выбраны ниже точки Кюри - 740 и 750°С. Поскольку намагниченность для ферромагнетиков заметно меняется с температурой, особенно вблизи точки Кюри, для количественного определения содержания аустенита значения / j стали сравнивались с / J эталона при той же температуре. Эталоном служило армко-железо, для которого в исследованной области температур (до 760 С) образование 7-фазы не реализуется, и все изменение величины намагниченности может быть отнесено за счет влияешя температурного фактора. Как видно из рис. 12, изменение величины / с, вызванное образованием парамагнитной 7-фазы при нагреве до 750 С, весьма значительно по сравнению с эталоном. В связи с этим такой метод достаточно надежно может быть применен для анализа а -> 7-превращения даже при температурах, близких к точке Кюри. Оценки показьшают, что при поддержании постоянства температуры с точностью до 2°С погрешность в определении количества аустенита не превышает 3 %. Для предотвращения окисления и обезуглероживания зталвнный и исследуемый образцы подвергались гальваническому меднению (толщина слоя 40 -50 мкм). Такое покрытие не вызывало заметного изменения намагниченности образцов и поэтому не вносило дополнительных погрешностей в данные магнитометрических измерений.  [c.37]

В работе [ 69] изучено влияние скорости нагрева на положение A i в условиях изотермического эксперимента. Образцы стали 20 после холодной прокатки (е = 50 %) нагревали до разных температур ниже 725°С со скоростями 500, 900, 3000 и 6000°С/мин. После вьщержки от двух до тридцати минут производилась закалка, и металлографическим методом определялась степень развития а 7-превращения. Исследования показали, что снижение критической точки A i наблюдается после нагрева деформированных образцов со всеми исследованными скоростями, причем при варьировании условий нагрева в указанных пределах фиксируется одна и та же температура начала образования аустенита ( 690°С). Следовательно, изменение скорости нагревает 500 до 6000°С/ /мин не приводит к заметным различиям в степени неравновесности структуры перед началом а 7-превращения, хотя некоторые отличия в кинетике его протекания в йроцессе изотермической выдержки наблюдаются. Так, при ускорении нагрева вначале имеет место некоторое отставание в развитии превращения. Однако после вьщержки в течение 10-15 мин для всех скоростей нагрева фиксируется одинаковое количество 7-фазы.  [c.51]

Дефекты, созданные пластической деформацией, весьма устойчивы и сохраняются в течение длительного времени при нагреве в области суб-критических температур. Так, при 600°С полное снятие наклепа достигается лишь после 3,5 ч, а при 700°С - после 1,5-ч вьщержки [ 74]. Обращает на себя внимание то обстоятельство, что повышенная твердость сохраняется и при протекании начальных стадий рекристаллизации. Так, в деформированной стали 20 после вьщержки при 700°С в течение 30 мин рекристаллизация проявляется как рентгенографически (на линиях появляются точечные рефлексы), так и металлографически, а твердость сохраняется на уровне НВ 240 при НВ 137 в отожженном состоянии. При этом, кяк видно из рис. 25, а -> -превращение заметно ускоряется по сравнению с неотпушенной сталью (ср. кривые 1 я 3). По-видимому, это связано с появлением большого количества субграниц вследствие рекристаллизации ферритной матрицы и сфероидизации карбидов, тго, как известно, облегчает зарождение новой фазы, поскольку гетерогенное образование зародыша на границах требует меньшей энергии. Получение же при этом того же предельного количества аустенита, что и для неотпущенной стали, свидетельствует о сохранении при указанном отпуске значительной части искажений решетки. Удлинение выдержки, естественно, снижает избыточную энергию системы и приводит к уменьшению предельного количества аустенита (см. рис. 25, кривые 4-6).  [c.56]

Выполненные данным методом исследования показали, что морфология образования аустенита при нагреве предварительно закаленной стали сильно зависит от скорости нагрева. При медленном нагреве (v = 1 -2°С/мин) аустенит образуется равномерно по всему образцу (светлые участки на рис. 27). При таких условиях нагрева к моменту начала а -> 7-превращения структура представляет собой сорбит отпуска с равномерно распределенной карбидной фазой (рис. 28, а). В этом случае участки 7ч )азы возникают преимущественно на поверхности раздела феррит-ной (Ф) и карбидной (К) фаз (рис. 28, б). Аустенит образуется не в виде равномерной каймы вокруг карбидных частиц, а лишь в отдельных местах поверхности раздела. При удлинении вьщержки карбидные частицы растворяются, и в структуре регистрируются только а- и 7-фазы (рис. 28, в, г). Образование и рост аустенита происходят ориентированно, о чем свидетельствует определенная направленность кристаллов 7-фазы. Ориентированное расположение участков аустенита сохраняется во всем межкритическом интервале темпера- тур. Высокотемпературные рентеновс-кие съемки показали, что при таких условиях нагрева концентрация углерода в 7-фазе соответствует определяемой из диаграммы равновесия, что согласуется с данными других исследований, выполненных при аналогичных скоростях нагрева.  [c.61]

Четко выраженный ориентированный характер развития а -> 7-превращения в отожженных доэвтектоидных углеродистых сталях отмечался в работах [87, 116, 118], хотя авторы работы [ 118] объясняют это направленной диффузией углерода. Ориентированное образование аустенита при разных условиях нагрева наблюдается и в чугунах с фер-рито-перлитной матрицей.  [c.89]


Смотреть страницы где упоминается термин Превращения в стали при нагреве. Образование аустенита : [c.166]    [c.227]    [c.67]    [c.26]    [c.51]    [c.55]   
Смотреть главы в:

Металловедение и технология металлов  -> Превращения в стали при нагреве. Образование аустенита



ПОИСК



Аустенит

Аустенита образование

Нагрев стали

Превращение

Превращения в стали при нагреве

Стали аустенита

ные Превращение аустенита



© 2025 Mash-xxl.info Реклама на сайте