Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое кручение цилиндрических стержней

УПРУГОЕ КРУЧЕНИЕ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ  [c.123]

При кручении цилиндрического стержня в упругой стадии в поперечном сечении возникают касательные напряжения, которые определяются по известной формуле  [c.550]

Задача о кручении цилиндрического стержня из упруго-пластического материала без упрочнения  [c.462]

Рассмотрим задачу о кручении цилиндрического стержня произвольного поперечного сечения из упруго-идеально-пластического материала. Выберем оси координат х, у ж z так, как показано на рис. 154.  [c.462]


Рис. 154. Обозначения и выбор осей координат в задаче о кручении цилиндрического стержня из упруго-пластического материала. Рис. 154. Обозначения и выбор осей координат в задаче о кручении цилиндрического стержня из упруго-пластического материала.
Дословный перевод слова деформация означает изменение формы, которое происходит в большинстве случаев деформирования, однако не во всех. Поэтому иногда встречающееся определение деформации только как изменения формы тела является неточным. Так, например, при кручении цилиндрического стержня ни длина, ни диаметр практически не изменяются,. хотя закручиваемый образец может претерпевать сильную упругую и остаточную деформацию.  [c.42]

Задача об упруго-пластическом кручении цилиндрического стержня, поперечное сечение которого близко к эллипсу, а упругое ядро является эллипсом, рассматривалась В. В. Соколовским (Прикл. матем, и мех., 6  [c.567]

Аннин Б. Д. Существование и единственность решения задачи упруго-пластического кручения цилиндрического стержня овального сечения.— Прикл. математика и механика, 1965, т. 29, с. 779—887.  [c.229]

Построено замкнутое решение задачи об упруго-пластическом кручении цилиндрического стержня овального поперечного сечения. Рассмотрен ряд задач о жестко-пластическом кручении призматических стержней различных поперечных сечений и круговых, стержней различных продольных сечений. Приведено весьма простое решение задач о кручении конического стержня из упрочняющегося материала.  [c.4]

Поставим задачу об определении напряженно-деформированного состояния цилиндрического стержня при кручении в рамках теории малых деформаций. Рассмотрим абсолютное или относительное равновесие вала, причем влияние переменной температуры и массовых сил учитывать не будем (в силу линейности задач теории упругости влияние этих факторов при необходимости можно учесть отдельно). Рассмотрим уравнения равновесия  [c.356]

В этой же главе обсуждаются и более сложные случаи — свободное кручение призматических стержней произвольного поперечного сечения в упругой и упруго-пластической стадиях работы материала, а также кручение круглых цилиндрических стержней в случае переменного вдоль оси крутящего момента и кручение тел вращения.  [c.11]


Рассмотреть предельное состояние круглого (радиус а) цилиндрического стержня при одновременном кручении и растяжении (исходить из уравнений-теории упруго-пластических деформаций при условии несжимаемости поперечные сечения остаются плоскими и поворачиваются целиком, отличны от нуля лишь компоненты напряжения г ) найти распределение напряжений и значения осевой силы и крутящего момента.  [c.132]

Особенностью чистого кручения любых профилей является возникновение в поперечных (и продольных) сечениях лишь касательных напряжений. Но в отличие от цилиндрического стержня круглого сечения при кручении некруглых профилей поперечные сечения стержня перестают быть плоскими, искривляются, наблюдается, как говорят, депланация сечений. В этом случае кручения некруглых профилей гипотеза плоских сечений неприменима, что значительно осложняет решение, которое осуществляется лишь методами теории упругости.  [c.119]

Момент упругих сил при скручивании цилиндрического стержня кругового сечения выражается формулой М = Сф, где Ф — угол закручивания, а жесткость при кручении с находится по формуле  [c.45]

Приведем последнее замечание, иллюстрирующее сложность явления разрушения. Если испытать на растяжение или изгиб цилиндрические образцы из одного и того же хрупкого материала (например, из фарфора), но различных размеров, то, как установлено экспериментаторами, прочность на разрыв оказывается тем меньшей, чем больше размеры образца. Аналогичные наблюдения были проведены при сравнении прочности на разрыв геометрически подобных цилиндрических стержней различных размеров, полученных путем механической обработки из одной и той же выплавки мягкой стали ). Вопрос о том, влияют ли размеры геометрически подобных образцов на их прочность при растяжении или изгибе для материалов, деформирующихся до разрушения лишь упруго, является пока открытым ввиду крайней трудности получения однородных образцов разных размеров (например, из таких материалов, как плавленый фарфор). С той же трудностью приходится сталкиваться и в отношении образцов, вырезанных из мягкой стали илп другого пластичного металла, предварительно подвергнутого холодной или горячей обработке—прокатке или ковке. Постулируя возможность существования масштабного фактора , влияющего на величину временного сопротивления хрупких материалов (как плавленый фарфор), В. Вейбулл ) развил статистическую теорию прочности материалов, которая объясняет понижение прочности крупных образцов по сравнению с мелкими тем, что для крупных образцов существует относительно большая вероятность образования различных трещин и дефектов. К тому же типу явлений следует отнести также и предполагаемое влияние пространственного градиента напряжений на прочность образцов, подвергнутых чистому изгибу или кручению.  [c.216]

Распределение напряжений в поперечном сечении цилиндрического стержня, подвергнутого кручению за пределом упругости двумя моментами на небольшой угол относительно своей оси, может быть установлено достаточно просто для изотропного материала, при произвольном законе деформирования этого материала ). Для сравнительно малых значений относительного угла закручивания допустимо считать, что деформации в цилиндре представляют собой простой сдвиг пропорциональный расстоянию г рассматриваемой точки Р от оси стержня. Это равносильно предположению, что одно из двух поперечных сечений, расположенных на взаимном расстоянии I, повернется вокруг общей оси по отношению к другому сечению на небольшой угол а, пропорциональный /,  [c.395]

Изогнутый по окружности СТЕРЖЕНЬ с постоянной СТЕПЕНЬЮ КРУЧЕНИЯ. Пусть в недеформированном состоянии стержень будет прямым и цилиндрическим. Пусть поперечное сечение обладает кинетической симметрией. На стержень действуют на концах силы и пары. Одной из возможных форм упругой линии будет окружность, причем степень кручения вдоль стержня будет постоянной растяжение при этом отсутствует перерезывающая сила направлена  [c.435]

Кручение круглого стержня переменного диаметра. Рассмотрим вопрос о предельном значении момента при скручивании круглого стержня переменного диаметра (рис. 205). Введем цилиндрическую систему координат г, ф, г, направив ось г по оси стержня. Как и при упругом кручении, можно считать, что поперечные сечения стержня остаются плоскими, радиусы же искривляются. Следовательно, составляющие скорости равны  [c.305]


В учебном пособии изложены основные положения курса теории упругости и элементы теории пластичности, приведены примеры решения плоской задачи в прямоугольных и полярных координатах, дан расчет толстостенных труб при внешнем и внутреннем давлении и при насадке, расчет вращающихся дисков, тонких прямоугольных и круглых плит, цилиндрических оболочек, стержней при кручении. Приведены задачи термоупругости и пластичности.  [c.2]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

Кручение круглых анизотропных стержней исследовано в [76, 77, 79, 169, 235]. С. Г. Лехницким [79] получено решение для стержня с цилиндрической анизотропией при упругих характеристиках, зависящих от радиуса по степенному закону. Им же в [76, 77], а также в [235] рассмотрен более сложный случай, когда в цилиндрически анизотропном стержне модули сдвига зависят не только от радиуса, но и изменяются по длине стержня. Эта задача сводится к определению функции напряжений из уравнения  [c.79]

Основные типы металлических (стальных) упругих элементов муфт изображены на рис. 16.17 а — витые цилиндрические пружины б — стержни, пластины или пакеты пластин, расположенные по образующей или по радиусу в — пакеты разрезных гильзовых пружин г — змеевидные пластинчатые пружины. Эти элементы работают на кручение (рис. 16.17, а) или на изгиб (рис. 16.17, б, в, г).  [c.358]

Мы рассмотрим чистое кручение непрерывно-неоднородного стержня, у которого в каждой точке имеется плоскость упругой симметрии, нормальная к образующей, а коэффициенты по длине не меняются. Уравнения теории кручения мы выведем не пользуясь материалом главы 3, а непосредственно. Предположим, что только две составляющие напряжения не равны нулю и не зависят от продольной координаты 2, а остальные четыре равны нулю. Приняв какую-нибудь точку на торце за начало координат и направив ось 2 параллельно образующей цилиндра, запишем основную систему уравнений в цилиндрических координатах следующим образом  [c.299]

Модель аккумулятора энергии кручением — это цилиндрический стержень, закрепленный одним концом и деформированный крутящим моментом М пары сил, плоскость которых перпендикулярна к оси стержня. Различные сечения стержня повернуты под различными углами относительно закрепленного конца. В случае снятия внешней нагрузки внутренние упругие силы, возникающие в стержне при деформации кручения, возвратят его в исходное состояние равновесия, высвобождая при этом накопленную энергию  [c.22]

Неустойчивость равномерного режима пластической деформации при кручении стержня кругового сечения из мягкой стали. Е. Рейсс в одной из своих интересных работ по теории пластичности ) в 1938 г. исследовал те нарушения в линейном распределении касательных напряжений т=тдг/а при упругом кручении цилиндрического стержня из мягкой стали, которые вызываются появлением в стержне первых слоев скольжения (пересечение этих слоев с плоскостью поперечного сечения имеет вид узких черных клиновидных площадок, направленных радиально внутрь, как показано на фиг. 461). Рейсс поставил перед собой задачу построить поверхность напряжений при упругом кручении цилиндрического стержня, используя аналогию с мембраной и предполагая, что материал стержня (сталь) переходит в пластически деформированное состояние по радиальному слою (вдоль радиуса кругового профиля). Далее, Рейсс полагал, что в указанном радиальном весьма тонком слое металла напряжения достигают нижнего предела текучести Хд при простом сдвиге, в то время как в некоторых других областях поперечного сечения касательные напряжения х принимают значения x2предел текучести (также при простом сдвиге), и в этих областях получаются только упругие деформации. Иными словами, он допускает существование неустойчивого упругого равновесия напряжений, при котором в некоторой части стержня напряжения х проскакивают нижний предел текучести, не вызывая пластической деформации. На фиг. 512 представлено это неустойчивое состояние равновесия стержня кругового сечения с помощью горизонталей onst функции напряжений упругого кручения.  [c.591]

Мембранная аналогия известна в основном как аналогия Прандтля (см. [58]) в задаче теории упругости о кручении цилиндрических стержней произвольного профиля. В задачах гидродинамики эта аналогия была использована Ку харским (см. [140] ).  [c.264]

ЛН1ШМ ] .Д. Существование и единственность решения упруго-пластической задачи кручения цилиндрического стержня овального сечения. - ПММ, 1965, т. 29.№2.  [c.253]


Вторая аналогия между задачей об упруго-пластическом кручении цилиндрических стержней и задачей о течении нелинейно — вязкой жидкости в цилиндрических трубах была указана Е. Верлеем [168].  [c.144]

Уравнения движения шарнирного четырехзвенника с упругими звеньями. В механизме шарнирного четырехзвенника (рис, 52) считаем, что внешние силы приложены только к звеньям / и <3 и представлены парами сил с моментами 4Уд и Жз. Инерцией шатуна 2 пренебрегаем и, следовательно, реакции, действующие на него со стороны звеньев 1 и 3, направлены по линии ВС. В этом случае шатун испытывает только деформации растяжения — сжатия и его коэффициент ПОДЙТЛНйОеТН МбЖНб оН()ёдёЛить по формуле для цилиндрических стержней е2 = 12 Е.8, где /2— длина шатуна Е — модуль упругости 5 — площадь поперечного сечения шатуна. Коэффициент податливости вала звена 1 определяем, учитывая только деформации кручения е = 1 1 01 р ), где 1 — длина участка вала  [c.120]

Бесконечно малые деформации бесконечно тонкого первоначально цилиндрического стержня. Изгиб и кручение в случае изотропного и ненапряженного стержня. Изгиб напряженного стержня. Метод Граеезанда определения коэффициентов упругости проволоки. Изгиб горизонтальной проволоки от собственного веса. Продольные и крутильные колебания стержня. Поперечные колебания ненапряженного стержня. Поперечные колебания слабо напряженной и сильно напряженной струны)  [c.354]

Практическая важность угих глав обусловлена необходимостью обеспечения той раиновеснои формы упругой системы (сжатых стержней или иластии, балок на жестких или упругих опорах, цилиндрических оболочек и др.), которая принята конструктором в качестве исходной при расчете соответствующей деформации (сжатия, кручения или изгиба). Превышение так называемых критических, пли эйлеровых, нагрузок, вызванное нарушением расчетной схемы, может привести к аварийным ситуациям и к разрушению корпуса. В связи с этим большое значение приобретает правильное определение критических (эйлеровых) напряжений, позволяющих с учетом необходимого запаса прочности, который, в свою очередь, завпсит от достоверности знания внешней нагрузки, точности расчег-ных формул, уверенности в механических качествах материала и тщательности выполнения конструкции, назначить допускаемые напряжения.  [c.47]

В случае кручения Купфер определил постоянную упругости для круглого цилиндрического стержня как угол закручивания стержня единичной длины единичной силой, приложенной на единичном радиусе стержня. К сожалению, он обозначил эту величину символом fi, который к тому времени использовался многими упругистами для обозначения модуля упругости при сдвиге изотропного материала. Если мы обозначим эту величину, введенную Купфером, через то увидим, что она связана с модулем сдвига формулой а=л/(2[Хд.). Во всех случаях принималась теория одной упругой постоянной, так что коэффициент Пуассона был равен 1/4. Введенная Купфером величина б, полученная в опытах на кручение цилиндрических образцов, выражается следующим образом 6=1/(5fi .).  [c.393]

Представляет интерес задача о кручении неоднородного цилиндрического стержня, составленного из определенного числа N полых цилиндров (трубок), соединенных жестко по поверхностям контакта путем склейки или спайки (рис. 92). 1У1ы остановимся на случае, когда каждый слой является цилиндрически-анизотропным и однородным и в каждой точке имеется плоскость упругой симметрии, нормальная к геометрической оси (она же является плоскостью упругой симметрии не только для всего стержня, но и для всех слоев) при этом слои соединены  [c.306]

Рассмотрим упруго-пластйческое кручение цилиндрических или призматических стержней. Примем систему декартовых координат хуг, направив ось г по оси стержня. Следуя обычной теории кручения призматических стержней [9], будем считать, что все поперечные сечения испытывают жесткий поворот в своей плоскости  [c.59]

Одновременно вышел в свет перевод книги проф. С. П. Тимошенко Устойчивость упругих систем , в котором была напечатана статья проф. В. 3. Власова Изгиб и кручение тонкостенных стержней и цилиндрических оболочек открытого профиля . В частности, здесь был дан расчет тонкостенных стержней с криволинейной осью. Этой же теме посвящены работы А. А. Уманского, А. Р. Ржаницына, Н. Я. Грюнберг, Ю. П. Григорьева и Р. Л. Малкиной.  [c.10]

Модуль упругости при сдвиге измерялся на склеенных цилиндрических полых стержнях при кручении. Применялись образцы с внешним диаметром 25 и внутренним 15 мм. Для увеличения общей деформации склеенного образца, а следовательно, и увеличения точности измерения, образцы изготовлялись с двумя клеевыми слоями за счет склеивания промежуточной пластины толщиной 2 мм. Общая деформация образца при нагружении замерялась тензометром Мартенса. Деформация клеевого слоя определялась как разность между вбщей деформацией образца и деформацией материала, из которого изготовлен образец. По окончании испытаний G и а образцы разрушались для замера пористости прослойки. Модуль упругости подсчитывался по формуле  [c.258]

К 1914 г. относится начало работ по теории упругости Л. С. Лейбензона — прежде всего по устойчхгвости упругого равновесия длинных сжатых стержней с первоначальным кручением около прямолинейной оси стержня, а затем по устойчивости сферической и цилиндрической оболочек. Практическое значение первой задачи ясно из того, что всем известные теперь сетчатые башни системы В. Г. Шухова составлены из закрученных прямолинейных образующих.  [c.264]

За рассматриваемый период в области теории упругости работал также и целый ряд других английских ученых. Лармор (.Т. Larmor) дал обобщение теоремы о динамической аналогии (Кирхгоффа) для стержней с начальной кривизной ). Он показал также ), что если в подвергнутом кручению валу имеется цилиндрическая полость круглого сечения, ось которой параллельна оси вала, то касательное напряжение близ полости может оказаться вдвое большим, чем соответствующее напряжение в сплошном валу при отсутствии полости. Чарльз Кри ( harles hree), хорошо известный геофизик, также затрагивал в некоторых из своих ранних работ вопросы теории упругости. Его исследова-  [c.410]

Покажем, что в случае стержней, имеющих форму тела вращения, мы удовлетворим всем уравнениям теории упругости, предположив, что круговые поперечные сечения остаются при кручении плоскими. В отличие от того, что мы имели для круглых цилиндрических стерншей, нужно лишь допустить возможность искривления радиусов поперечного сечения.  [c.181]


Смотреть страницы где упоминается термин Упругое кручение цилиндрических стержней : [c.43]    [c.547]    [c.90]    [c.572]    [c.552]    [c.230]   
Смотреть главы в:

Сопротивление материалов  -> Упругое кручение цилиндрических стержней



ПОИСК



Кручение стержней

Кручение упругого стержня

Кручение упругое

Кручение цилиндрических стержней

Стержень цилиндрический

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте