Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия работы и виды разрушения

Условия работы и виды разрушения подшипников скольжения  [c.273]

УСЛОВИЯ РАБОТЫ И ВИДЫ РАЗРУШЕНИЯ  [c.317]

Условия работы, типичные виды разрушений и принципы расчета на статическую прочность  [c.255]

Условия работы, типичные виды разрушений и принципы расчета 259  [c.259]

Приведенное краткое перечисление видов коррозии указывает на их многообразие и на многообразие причин, вызывающих ее. Поэтому меры по защите оборудования от коррозии следует выбирать с учетом конкретных условий эксплуатации. Борьба с коррозией возможна при знания причин, ее вызывающих, механизма протекания процесса и вида разрушений, которые вызваны ею. Повреждение сосудов и аппаратов чаще всего вызывается совместным действием различных факторов, поэтому определение мер по повышению надежности, долговечности и безопасности таких сосудов производят на основе всестороннего анализа условий их работы. Это можно проиллюстрировать следующим примером.  [c.372]


Конструкции подшипников разработаны таким образом, что при нормальных условиях работы и достаточной смазке основным видом разрушения подшипников является усталость металла. В связи с вышеизложенным необходима периодическая проверка соответствия выпускаемых подшипников тем значениям динамической грузоподъемности, которые заложены в каталоге.  [c.46]

Многообразие условий работы деталей машин, а также материалов, используемых в технике, обусловливает различные виды взаимодействия поверхностей и, следовательно, различные виды изнашивания. Изнашивание классифицируют по кинематическим признакам, в соответствии с особенностями процесса разрушения и явлениями, вызвавшими износ, по условиям работы и др.  [c.250]

Многообразие условий работы деталей машин, а также материалов, используемых в технике, обусловливает различные виды взаимодействия поверхностей и, следовательно, различные виды изнашивания. Изнашивание классифицируют по кинематическим признакам в соответствии с особенностями процесса разрушения и явлениями, вызвавшими износ по условиям работы и др. В табл. 20.7 приведена классификация видов изнашивания материалов в зависимости от природы процессов, протекающих в зоне контакта, по ГОСТ 23.002—78.  [c.390]

Кроме обычных видов разрушения деталей (поломок), наблюдаются также случаи, когда под действием нагрузок, прижимающих две детали одну к другой, возникают местные напряжения и деформации. Разрушения деталей в этом случае вызывают контактные напряжения. Отсюда — для многих деталей (а зависит это от конструкции, нагрузки, условий работы и других факторов) проводится расчет по условию контактной прочности  [c.11]

Природные факторы в силу своей длительности и постоянства непрерывно воздействуют на все дорожные сооружения. Вода издавна считалась злейшим врагом дорог. Действительно, дорожникам, чтобы обеспечить нормальные условия эксплуатации дорог и сохранить их сооружения, приходится бороться с водой во всех ее видах, в условиях воздействия различных природных факторов. Дожди, ливни, потоки воды от таяния снега размывают земляное полотно, откосы, канавы, подмывают сооружения (лотки, подпорные стенки, трубы и т. д.) и приводят к нарушению их работы и преждевременным разрушениям. Проникая в поры бетона, камня, кирпичной кладки и в другие материалы сооруже-  [c.19]

Следует отметить, что в (2.11) физический смысл S вполне соответствует интерпретации этого параметра, достаточно устоявшейся в настоящее время критическое напряжение хрупкого разрушения S является параметром, достижение которого наибольшими главными напряжениями является достаточным условием для реализации хрупкого разрушения, т. е. для обеспечения страгивания и распространения микротрещины. При этом в качестве необходимого условия выступает условие зарождения микротрещин, которое многие исследователи, например в работах [101, 149—151], принимают в виде (2.3). В предлагаемом критерии хрупкого разрушения (2.11) необходимое условие хрупкого разрушения соответствует условию зарождения микротрещин скола в виде (2.7). Как уже говорилось, разрушающее напряжение а/ при одноосном растяжении образцов в диапазоне температур Го Г Тем (см. рис. 2.6 и 2.7) совпадает с напряжением распространения микротрещин Ор, тождественно равным S , что позволяет получать значения S (x) на основании указанных предельно простых экспериментов. Однако совпадение а/ с S не является общим правилом даже при хрупком разрыве в условиях одноосного растяжения в области температур Т <То разрушающее напряжение а/ не является напряжением распространения микротрещин (см. рис. 2.7), а соответствует напряжению, при котором выполняется условие зарождения микротрещин. Такая же ситуация наблюдается при хрупком разрыве в условиях объемного напряженного состояния, например при разрушении образцов с концентраторами и трещинами (см. подразделы 2.1.4 и 4.2.2).  [c.72]


При сложном напряженном состоянии, например, в местах концентрации растягивающих напряжений условия перехода от пластического разрушения к хрупкому другие. Поэтому и температура перехода от одного вида разрушения к другому, определенная в этих условиях, отличается от температуры перехода, найденной путем испытания гладких образцов на растяжение. Элементы многих конструкций работают именно в условиях концентрации напряже-  [c.71]

Общая коррозия может быть равномерной и неравномерной (см. рис. 1, а, б). Равномерная представляет собой наименее опасный вид разрушения при условии, что ее скорость не превышает норм, предусмотренных для данного вида оборудования. Однако общая коррозия опасна при работе оборудования на изгиб и кручение, так как разрушаются наиболее нагруженные внешние слон металла.  [c.3]

Предельные значения факторов, ускоряющих процесс, должны выбираться, в первую очередь, исходя из условия сохранения физической природы отказа, т. е. чтобы вид и характер разрушения при нормальной эксплуатации и при работе на повышенных режимах были идентичны. Для определения коэффициента ускорения надо знать функциональную зависимость процесса разрушения от данного параметра (скорости, нагрузки).  [c.505]

Как было сказано, характерными особенностями работы червячных передач являются Виды разрушения, большие скорости и неблагоприятные условия смазки, особенно в полюсной зоне. Поэтому при больших нагрузках в этой зоне появляется заедание, приводящее к постепенному разрушению зубьев червячного колеса. Заедание особо опасно для колес, изготовленных из безоловянных бронз и чугуна. Оловянные бронзы более стойки против заедания, но у них низкая контактная прочность, поэтому заеданию предшествует усталостное выкрашивание рабочих поверхностей зубьев колеса. Поскольку интенсивность заедания зависит от величины контактных напряжений, расчет на контактную выносливость для червячных передач является основным.  [c.310]

В практике исследования эксплуатационных разрушений помимо определения вида разрушения возникают и другие задачи. Они вытекают из требования проведения контроля над состоянием детали в эксплуатации и устранения несовершенств конструкции или изменения режимов ее работы. Эти стратегические задачи решаются в рамках количественной фрактографии. При количественных оценках силового и температурного нагружения элементов конструкций исходят из того, что изменение режима или условий внешнего воздействия приводит к изменению напряженного состояния материала в вершине трещины. Формирование того или иного параметра рельефа  [c.80]

Итак, эквивалент повреждающего действия нагрузок может составлять от одного до несколь- i ких актов продвижения трещины за ПЦН, что со- j ответствует формированию от одной до несколь- j ких усталостных бороздок за каждый ПЦН в зави- симости от его вида, соответствующего условиям работы двигателя. В связи с этим живучесть разрушенного диска, выраженную в ПЦН, рассчитывают по формуле [И]  [c.473]

Рассматриваемые два вида разрушения относят к нерасчетным случаям нагружения и работы лопаток, поэтому они не могут быть использованы для анализа реализуемой в эксплуатации ситуации с накоплением повреждений при достижении лопатками предельного состояния в расчетных условиях.  [c.623]

Прочность композитов, определяемая формой и размерами их поверхностей прочности, в общем случае зависит от напряженного состояния, времени (разрушение при ползучести), истории изменения напряжений (усталостное разрушение), условий эксплуатации, объемного содержания волокон, условий изготовления и многих других факторов. В настоящей работе основным фактором считается вид напряженного состояния.  [c.460]

Все три вида разрушений встречаются в практике эксплуатации энергетических установок, и по морфологическим особенностям разрушения можно судить об условиях их работы. Так, вязкое разрушение часто имеет место при повышении температуры при работе труб поверхностей нагрева в условиях ползучести. Разрушение путем образования клиновидных трещин вызвано повышенным уровнем неучтенных расчетом напряжений в условиях стесненной деформации в зонах концентрации напряжений, а также может быть связано с охрупченным состоянием металла. Разрушение порообразованием обычно происходит в результате длительной эксплуатации.  [c.13]


Влияние энергии удара на износ и закономерности изнашивания при ударе по различным видам абразива неоднозначно. При изнашивании, связанном с ударом по абразиву, исключительно важное влияние на его природу и закономерности оказывает вид абразива. Кроме того, анализ полученных результатов показывает, что разрушение горной породы и. -наблюдающееся при этом изнашивание образцов — это взаимосвязанные процессы, для которых можно найти оптимальный режим, со--ответствующий наибольшей износостойкости образцов. Этот вывод представляет собой интерес применительно к оборудованию буровых долот и указывает возможные пути повышения их эффективности и износостойкости. При ударе по абразиву форма контактирующей поверхности весьма существенно влияет на природу и интенсивность изнашивания при скольжении такого влияния не наблюдается. В связи с этим при конструировании ударного инструмента, взаимодействующего по условиям работы с абразивом, необходимо учитывать такую специфику.  [c.64]

Хотя расслоение и рассматривается как самостоятельный вид разрушения, условия его возникновения исследованы недостаточно. Исключение представляет работа [39], в которой  [c.134]

Так, усталостный характер дополнительных трещин в подавляющем большинстве случаев свидетельствует об аналогичном характере основного излома. Однако при таком косвенном анализе следует учитывать условия работы детали и возможность различной последовательности возникновения того или другого вида разрушения.  [c.176]

Процесс трения характеризуется большим разнообразием видов фрикционных сочленений, материалов, условий их работы и изменений, происходящих на контакте. Соответственно и диапазон изменения интенсивности износа очень широк 10 —10 . Все это обусловливает сложность систематического исследования поверхностного разрушения и появление огромного количества ра-  [c.10]

В связи с таким характером разрушения необходимо изучение трещиностойкости материалов (предназначенных для изготовления резьбовых соединений) при продольном и поперечном сдвигах. В работах [4—6] приведена подробная библиография работ, выполненных советскими и зарубежными исследователями по оценке трещиностойкости и методом испытаний в условиях продольного и поперечного сдвига. Вопросы расчета коэффициентов интенсивности напряжений применительно к крепежным изделиям энергетических установок рассмотрены в работе [7]. В зависимости от протекания процесса разрушения поле напряжений в вершине трещины определяется тремя коэффициентами интенсивности напряжений. Вид излома образца с трещиной является объективным критерием смены одного механизма разрушения другим. В работе [4] приведены возможные схемы разрушения образцов материала с наклонными боковыми трещинами в условиях хрупкого (обобщенный нормальный обрыв) и квазихрупкого (смешанное разрушение и продольный сдвиг) разрушений.  [c.388]

Большое развитие получает разработка вопросов сопротивления разрушению в вязкой и хрупкой области при ударном и статическом деформировании, позволившая классифицировать и в значительной мере объяснить природу возникновения двух типов изломов, охарактеризовать температур-но-скоростные зависимости механических свойств, оценить роль абсолютных размеров и напряженного состояния для хрупкого разрушения и предложить предпосылки расчета на хрупкую прочность (Н. Н. Давиденков). Эти работы способствовали решению практических задач выбора материалов и термической обработки для изготовления крупных паровых котлов, турбин, объектов транспортного машиностроения, химической аппаратуры повышенных параметров и других производств, получивших большое развитие в этот период. С этим связано и расширение работ по исследованию усталости металлов, которое сосредоточивается на изучении условий прочности и обосновании соответствующих расчетных предпосылок в зависимости от вида напряженного состояния, качества поверхности и поверхностного слоя, условий термической обработки (И. А. Одинг, С. В. Серенсен), в первую очередь применительно к легированным сталям, производство которых в больших масштабах было организовано для нужд моторостроения, турбостроения, транспортного машиностроения и других отраслей, изготовляющих высоконапряженные в механическом отношении конструкции.  [c.36]

Испытания проводили на машине трения с возвратно-поступательным движением типа МВ1. Условия испытания моделировали основной вид разрушения, наблюдаемый на поверхностях трения поршневых колец и цилиндровых втулок. В качестве критерия износостойкости была принята величина потери массы образцами за 100 ч работы машины, а для оценки сопротивляемости задиру — удельное давление, вызывающее повреждение поверхности трения образцов, резкое увеличение коэффициента трения и температуры.  [c.162]

Ускоренные испытания должны дополняться эксплуатационными. Главным критерием использования намеченного режима и метода испытания является сходство вида и характера разрушения при ускоренных испытаниях и ири эксплуатации. Следует убедиться, что в процессе ускоренных испытаний не возникли побочные разрушающие факторы, не характерные для работы механизма в эксплуатационных условиях.  [c.74]

Усиление режимов работы данного механизма или сборочной единицы производится в первую очередь в результате применения более высоких скоростей, нагрузок, температур, а также агрессивных сред, абразива и т. п. Предельные значения этих факторов должны выбираться из условия сохранения физических процессов, предшествующих отказу, т. е. чтобы вид и характер разрушения при нормальной эксплуатации и при работе на повышенных режимах были идентичны. Для определения коэффициента ускорения надо знать функциональную зависимость процесса разрушения от данного параметра (скорости, нагрузки). Например, при испытании изделий, которые выходят из строя в результате износа, для форсирования испытаний можно увеличивать нагрузку Р и скорость относительного скольжения V.  [c.75]


Основой для проектирования детали является расчет, обеспечивающий правильный выбор формы и геометрических размеров ее сечений и соответственно гарантирующий сопротивление материала разрушению. О работе детали можно судить после проведения расчетов на прочность, выносливость или износостойкость. Так как долговечность в зависимости от условий работы детали определяется каким-то преимущественным видом разрушения, один из указанных расчетов (например, на прочность) может оказаться, собственно, расчетом на долговечность.  [c.143]

Механизм ЭИ может быть представлен двумя процессами, действующими во времени друг за другом образование в результате электрического пробоя в поверхностном слое твердого тела канала разряда и последующее разрушение твердого тела под действием механических напряжений, возникающих в результате расширения канала разряда при выделении в нем энергии емкостного накопителя. Первая стадия процесса определяет уровень напряжения, при котором реализуется процесс ( рабочее напряжение ). Выбором оптимальных параметров импульсного напряжения и условий пробоя (вид среды, геометрия электродной конструкции) достигаются минимальные градиенты напряжения пробоя. На второй стадии процесса за счет оптимизации преобразования энергии накопителя в работу разрушения достигается минимальная энергоемкость разрушения материала. Техникоэкономическая эффективность процесса в значительной степени зависит от возможности интенсификации процесса разрушения - достижения высоких объемных показателей разрушения в единицу времени при приемлемых удельных показателях энергоемкости. Последнее может осуществляться как за счет увеличения числа единичных актов разрушения в единицу времени путем повышения частоты подачи  [c.25]

Условия работы подшипников в опорах шарошек долот весьма сложны. Из-за малых размеров подшипников действующие на них нагрузки и соответствующие контактные напряжения во много раз превосходят величины, допускаемые в общем машиностроении, увеличить же размеры опоры нет возможности, так как они ограничиваются размерами шарошек, обусловленными заданным диаметром скважины. Работа подшипников осложняется попаданием в них активного промывочного раствора, содержащего глину и другие присадки и абразивные частицы, вымываемые из забоя. Следует, наконец, иметь в виду, что процесс разрушения пород происходит  [c.73]

В настояш ее время, в связи с коренной перестройкой топливно-энергетической базы нашей страны в направлении резкого повышения роли ядерного горючего вместо природного газа, и, особенно, жидкого органического топлива, существенно возросла потребность в атомных энергетических установках. Организация их производства может быть основана на выпуске конструкций в многослойном исполнении, что в значительной степени будет способствовать решению всей проблемы. При этом, однако, следует иметь в виду, что атомные установки работают в более сложных и тяжелых условиях, чем сосуды химической промышленности и степень их ответственности значительно выше. Отсюда возникает необходимость в проведении комплекса работ, направленных на обеспечение надежности, долговечности п экономичности изготовления корпусов атомных реакторов, пароперегревателей, емкостей безопасности, защитных корпусов и др. Особое внимание должно быть обращено на вопросы, связанные с установлением напряженно-деформированного состояния многослойных стенок и сварных узлов конструкций, сопротивляемостью их хрупким и квазихрупким разрушениям, расчетами температурных полей в многослойных элементах, оценкой циклической прочности, изучением динамической и термоциклической стойкости конструкций, методам контроля, разработкой нормативных материалов по расчету на прочность.  [c.23]

Появление кавитации в насосах сопровождается рядом характерных явлений, отрнцателвно сказывающихся на работе насоса. При разрушении кавитационных пузырьков в зоне повышенного давления возникают шум и вибрация. Уровень шума зависит от размеров насоса и степени развития кавитации. Кавитационный шум проявляется в виде характерного потрескивания в зоне входа в рабочее колесо, развитая кавитация сопровождается уменьшением КПД насоса и разрушением (эрозией и коррозией) поверхности лопаток рабочих колес. Напор и мощность также снижаются. Из этого следует, что работа насоса в условиях кавитации недопустима.  [c.157]

Многообразие применяемых материалов и условий эксплуатации трущихся деталей предопределяет чрезвычайное многообразие видов изнашивания и разрушения поверхностей. Совокупность физико-хими-ческих процессов при трении определяет вид изнашивания и его интенсивность. Вид изнашивания и повреждения не являются характерными именно для данной пары трения, а зависят от условий работы. Изменение условий работы (вид смазки, скорость скольжения, температура) может приводить к изменению ведущего вида изнашивания поверхностей. Так, увеличение скорости скольжения вызывает повышение температуры и ускорение окислительных процессов, поэтому до некоторой скорости скольжения может наблюдаться схватывание поверхностей, а по достижении критической скорости возможен переход к окислительному изнашиванию вследствие увеличения скорости образования окисных пленок.  [c.122]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

В условиях экаопуатации детали работают в разных условиах нагружения и испытывают большое число сочетаний главных напряжений 01, <Т2, стз- Прочность детали может быть определена экспериментально путем разрушения при нехотсфых Сть Стз. Однако проведение таких опытов трудно осуществимо и экономически нецелесообразно, поэт<шу для получения расчетных формул для того или иного вида нагружения выдвигаются некоторые гипотезы.  [c.214]


Хотя результаты первых попыток исследования распространения погранияной трещины были не вполне понятны, они позволили обнаружить наиболее простой способ непосредственного экспериментального определения энергии адгезии Дальнейшее развитие этих методов могло бы дать способ независимого определения затраченной энергии и механизма диссипации в композитах. Помимо этого существуют другие оценки прочности при разрушении адгезионных слоев, основанные на измерении вязкости распространения трепщны в полимерном клее между двумя твердыми телами. Чтобы обеспечить распространение трещины по центру связующего слоя на конечном расстоянии от границы раздела, особое внимание в таких исследованиях (например, в работах [44, 53, 63]) было уделено частным видам геометрии, толщине связующего слоя, условиям отверждения и скорости распространения трещины. Ясно, что при таких условиях происходит разрушение связующего слоя, а не границы раздела, поэтому разрушение композита следует рассматривать как разрушение полимера при наложенных механических ограничениях.  [c.260]

Таковы основные особенности формирования рельефа на поверхности изнашивания при ударе о незакрепленный и монолитный абразив. Следует отметить, что независимо от вида абразива формирование рельефа на поверхности соударения при ударно-абразивном изнашивании имеет общую особенность — при одном акте соударения происходит поражение всей поверхности изнашивания. Одновременность воздействия на всю поверхность изнашивания зерен абразива создает условия для развития микротреш,ин и их последующего слияния вокруг непораженных перемычек и твердых карбидных включений, что в конечном итоге облегчает.выкрашивание и отделение частиц износа с поверхности соударения. При скольжении по абразиву твердые частицы вступают во взаимодействие с поверхностью изнашивания последовательно, иногда с длительными интервалами и на разных участках. Повторное движение абразивной частицы по ранее образованному следу может наступить через длительное время, а дробление абразивной частицы может наступить сразу, в момент ее входа во взаимодействие с поверхностью изнашивания. При последующем движении с поверхностью изнашивания взаимодействуют осколки этой частицы, не способные произвести такое разрушение, как исходная частица. Появление отдельных. рисок на поверхности изнашивания может длительное время не менять исходного режима и условия работы сопряженной пары трения.  [c.74]

Контактное усталостное выкрашивание с последующим развитием усталостного разрушения по сечению детали наблюдается в таких деталях, как подшипники качения и скольжения, на зубьях шестерен, в кулачковых шайбах, ушковых и замковых соединениях и пр. Одним из сложных по условиям работы узлов является замковое соединение лопаток с дисками в различных компрессорах и турбинах. Наблюдения показывают, что процессы коррозии трения существенно влияют на эксплуатационные повреждения и разрушения этих узлов. Коррозия трения зависит от многих факторов, в том числе конструктивных вида сопряжения выступа диска с замком лопатки, угла наклона контактной границы хвостовика лопатки, величины статической нагруа-ки и пр. [65, 66].  [c.140]

Исследования структуры материала при термоусталостя, проведенные при различных условиях нагружения и нагрева, определяют частные признаки, не дающие общей картины. Так, для сплава нимоник 80 показано, что при высоких температурах цикла /тах рэзрушение происходит по границам зерен при снижении тах — ПО зерну. В работе 91] указано, что изменение скорости нагружения (т. е. длительности цикла) приводит к изменению характера разрушения стали AJSJ 1010 и сплава инконель. Изменение вида трещин термоусталости (переход от  [c.97]

Зависимость сопротивляемости материала возникновенин> предельного состояния в локальной области от напряженного состояния и от истории нагружения. До сих пор при рассмотрении сопротивляемости материала разрушению или возникновению текучести имелась в виду работа его в условиях линейного напряженного состояния, изучаемого в опытах с образцами, подвергнутыми растяжению или сжатию, напряженное состояние в которых однородно. Вместе с тем в конструкциях материалу приходится работать и в иных, гораздо более сложных условиях — напряженное состояние материала может быть не линейным, а плоским или даже пространственным.  [c.520]

В работе [143] приведены результаты исследования коррозионного растрескивания стали 4340 с пределом текучести 1380 МПа в условиях анодной и катодной поляризации в 3,5 % -ном растворе Na l. Растрескивание происходило при обоих видах поляризации. Продолжительность экспозиции до начала разрушения возрастала при катодной поляризации, уменьшалась при более отрицательных потенциалах. Для объяснения наблюдавшихся результатов рассмотрены процессы, связанные с выделением водорода.  [c.179]

Фреттинг-коррозия — особый вид разрушения соприкасающихся поверхностей, подверженных микроскопическому перемещению, приводящему в условиях трения к активации металла и облегчению его взаимодействия с окружающей средой. Такой процесс разрушения, широко распространенный в различных машинах и аппаратах, возникает при контактировании вибрирующих деталей (pe opbi валы и оси с насаженными на них шестернями, дисками, подшипниками, муфтами заклепочные соединения, нахлесточные соединения, выполненные точечной сваркой, гребные валы и шлицевые соединения и пр.). Фрёттинг-коррозия протекает в воздухе и в присутствии различных газообразных и жидких сред. К настоящему времени выдвинут ряд гипотез, объясняющих это явление, получен обширный экспериментальный материал по изучению влияния различных факторов на процесс фреттинг-коррозии, который обобщен в монографиях [17, 18 и др.]. Значительно меньше работ посвящено влиянию фреттинг-процесса на прочность деталей, особенно в присутствии различных коррозионных сред.  [c.142]

Испытания четвертой категории — эксплуатационные — не могут быть стандартизованы из-за непреодолимых трудностей обеспечения постоянства условий работы испытуемых изделий в течение всего времени действия принятой методики. Методики государственных и междуведомственных приемочных испытаний, а также экспериментальных работ предприятий в промышленных условиях, связанных с оценкой показателей трения и износа, дотжны определяться специальными техническими условиями с соблюдением общих правил проведения эксплуатационных испытаний. Очевидно, была бы полезна разработка основных принципов постановки эксплуатационных испытаний (выбор условий испытаний, допустимая степень форсирования режима работы, порядок учета рассеивания сроков службы отдельных деталей и пр.) Наряду с этим для облегчения анализа опыта эксплуатации машин следует рекомендовать разработку руководящих материалов для определения сроков службы деталей с использованием методов математической статистики, по общей оценке долговечности оборудования (в частности, с применением экономических показателей), по основным видам разрушения и износа типичных деталей и пр.  [c.11]


Смотреть страницы где упоминается термин Условия работы и виды разрушения : [c.290]    [c.34]    [c.521]   
Смотреть главы в:

Детали машин Издание 3  -> Условия работы и виды разрушения



ПОИСК



Виды работ

Работа разрушения

Разрушение Условие

Разрушение, виды

Условие работы

Условия работы зуба в зацеплении. Виды разрушения зубьев

Условия работы, и виды разрушения подшипников скольжения

Условия работы, типичные виды разрушений и принципы расчета на статическую прочность



© 2025 Mash-xxl.info Реклама на сайте