Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальные результаты для композиционных материалов

Экспериментальные результаты для композиционных материалов  [c.106]

Результаты экспериментальных исследований различных композиционных материалов, полученные в работах [4, 8, 27, 38, 39], свидетельствуют о том, что значения коэффициента вариации для этих материалов находятся в пределах 10—20%, поэтому расчет по формуле (4.6) показывает, что объем экспериментальной партии (выборки) должен составлять 20—50 образцов.  [c.154]

Довольно трудно определять истинное значение сдвиговой прочности композиционных материалов, поэтому существуют значительные разногласия в выборе наилучшего способа испытания. В работе [111] дан последний обзор описанных способов и результаты некоторых из них сравнены экспериментально. В большинстве, если не во всех способах, предложенных в литературе, на образец действуют помимо чисто сдвиговых напряжений другие типы напряжений. Эти напряжения искажают измеряемые значения кажущейся сдвиговой прочности. Так, автор работы [111] получил для композиционных материалов, содержащих 60% (об.) углеродных волокон, различные значения сдвиговой прочности 100 МН/м2 — способом трансверсального сжатия, 80 МН/м — способом поперечного сдвига и 60 МН/м — способом изгиба короткой балки. Благодаря своей простоте наиболее часто применяется способ трехточечного изгиба короткой балки. Этот метод не дает абсолютных значений сдвиговой прочности, но при соблюдении некоторых условий может быть использован для получения сравнительных данных. Было показано, что для плит конечной ширины межслоевая прочность при сдвиге может быть очень большой у краев и значительно меньше вблизи средней линии, тогда как теория слоистых плит предсказывает однородность межслоевой прочности по ширине П2].  [c.123]


При условии кр = км становится очевидной корректность этих уравнений. Необходимо отметить, что уравнения (7.16) — (7.18) вполне приемлемы для характеристики композиционных материалов, не содержащих пор и контактирующих волокон. Наблюдается хорошее соответствие экспериментальных и расчетных данных, полученных исходя из этой модели, для композиционных материалов с объемной долей волокнистого наполнителя 0,2 и меньше, однако с увеличением содержания волокнистого наполнителя это соответствие нарушается, причем экспериментальные значения становятся меньше расчетных и отклонения достигают 11%. Более подробно эти результаты будут рассмотрены в разделе 7.3.  [c.292]

Глава 6 содержит анализ волновых процессов и ударных эффектов в телах из композиционных материалов. Теоретические и экспериментальные исследования в этом направлении привлекают все большее внимание. В главе представлен подробный обзор последних (по май 1973 г.) результатов, представляющих самостоятельный интерес для специалистов в области волновой динамики (анализ особенностей распространения волн в композиционных структурах, дисперсии, рассеяния и поглощения волн, ударных воздействий на композиционные материалы, а также описание экспериментальных результатов).  [c.11]

Интересно отметить, что описанные экспериментальные исследования привели к более широкому использованию элементарной теории изгиба балок. Для современных композиционных материалов аналогичные результаты были получены в работах [48, 37].  [c.140]

Возможности формирования и измерения волн напряжений в композиционных материалах, в принципе, определяются уровнем техники экспериментальных исследований соответствующих явлений в твердых телах. Для образования волн напряжений используют пневматические пушки, заряды взрывчатого вещества, ударные плиты, ударные трубы и пьезоэлектрические ультразвуковые генераторы, а для их измерения — тензодатчики, пьезоэлектрические кристаллы, емкостные датчики, оптические интерферометры, методы голографии и фотоупругости. Экспериментальные исследования, не столь обширные как теоретические, тем не менее обеспечивают устойчивый поток информации, необходимой для проверки математических моделей. Результаты экспериментальных исследований скорости распространения волн, рассеяния  [c.302]

Распространение нестационарных волн в вязкоупругой композиционной среде в настоящее время мало исследовано. То-шер [114] использовал метод Фурье (разложение решения по основным гармоникам) для получения скорости распространения и затухания импульсов напряжений в стержнях из композиционных материалов тканного типа на основе фенольной смолы. Теоретические результаты, основанные на применении эффективных комплексных модулей, найденных из опытов на вынужденные колебания, хо рошо согласуются с экспериментальными данными.  [c.182]


Настоящая монография охватывает ряд основных вопросов проблемы развития тепловой микроскопии, включая методические основы низко- и высокотемпературной металлографии, анализ конструктивного выполнения основных систем и узлов установок, разработанных под руководством автора. В книге рассмотрены также технические характеристики современной отечественной, главным образом серийной, и зарубежной аппаратуры, определены тенденции и рациональные пределы совершенствования средств тепловой микроскопии. Кроме того, монография содержит ряд экспериментальных результатов, полученных методами тепловой микроскопии и иллюстрирующих эффективность их использования для исследования строения и свойств широкого класса материалов (чистых металлов, промышленных сплавов, композиционных и полупроводниковых материалов). При этом в качестве примеров, как правило, приведены такие исследования, постановка которых оказалась возможной благодаря применению методов и аппаратуры для низко- и высокотемпературной металлографии и результаты которых ассоциируются с существенно новыми представлениями.  [c.8]

На рис. 6.2 приведены результаты испытаний слоистых полиэфирных пластин, армированных стекловолокном, полученные при проведении испытаний на машине с вертикально падающим грузом. По оси абсцисс отложено содержание стекловолокна в композиционном материале, а по оси ординат — отношение ударной прочности при растяжении к статической прочности при растяжении. При проведении исследований скорость удара изменялась в диапазоне от 2,8 до 5,42 м/с. При этом отношение пределов прочности составляло 1,4—1,6. Таким образом, можно видеть, что предел прочности при ударном нагружении оказывается выше предела прочности при статическом нагружении. На рис. 6.3 проводится сравнение картин разрушения экспериментальных образцов при действии статических и динамических нагрузок для случаев армирования стеклотканью и стекломатом  [c.147]

Рассмотренные закономерности разрушения бороалюминия, предложенный интегральный критерий разрушения и экспериментальные значения характеристик трещиностойкости являются основой для расчетов на прочность и долговечность элементов конструкций, выполненных из волокнистых композиционных материалов, при наличии технологической и эксплуатационной дефектности. Результаты исследований были использованы для обоснования уровня нагруженности и требований дефектоскопического контроля стержневых элементов ферменных конструкций, применяемых при разработке космических аппаратов в НПО Прикладная механика .  [c.253]

В аннотации к обзору Дуга [1] подчеркивается, что многочисленные модификации уравнения Рэлея — Максвелла и попытки распространить его действие на системы, не соответствующие тем основным положениям, на которые опирается вывод этого уравнения (разбавленные дисперсии, в которых свойства обоих компонентов мало отличаются друг от друга, а дисперсные частицы не взаимодействуют друг с другом), делают получаемые выражения полуэмпирическими корреляционными уравнениями, для которых необходимо экспериментально определять примерные значения функции распределения. При теоретическом анализе явлений проводимости в композиционных твердых средах общим и неизбежным является допущение полного геометрического порядка в распределении фаз. Предполагается, что волокна распределены в матрице равномерно, на одинаковом расстоянии и параллельно друг другу. Одиако реальные композиционные материалы, получаемые в результате выполнения целого комплекса технологических операций, имеют структуру, значительно отличающуюся от наших представлений об идеальной модели. Микроскопические исследования реальных композиционных материалов достаточно убедительно показывают неравномерное распределение волокон, отклонение от взаимной параллельности волокон и наличие пористости. Кроме того, недостаточные знания свойств самих волокнистых наполнителей и матриц в свою очередь накладывают дополнительные ограничения на возможности применения теоретических уравнений для прогнозирования теплофизических свойств композиционных материалов.  [c.294]


Полуэмпирические и структурные модели имеют и достоинства, и недостатки. Полуэмпирические модели более просты и, будучи результатом обобщений опытных данных, больше приспособлены для обработки экспериментальных результатов и их представления в аналитической форме. Полуэмпирические модели могут оказаться непригодными за пределами области, в которой получены лежащие в их основе опытные данные. Это следует учитывать, например, при оценке больших значений ресурса, при планировании ускоренных и форсированных испытаний и т. п. Перенос результатов испытаний образцов и малых моделей на натурные крупногабаритные конструкции также может встретить затруднения из-за масштабного эффекта, присущего многим явлениям повреждения и разрушения. Структурные модели этим недостатком в принципе не обладают. Они дают основания для более обоснованной экстраполяции результатов как во времени, так и в геометрическом масштабе, позволяют возместить недостаток сведений о статистической изменчивости результатов, присущей большинству ресурсных испытаний. Вместе с тем структурные модели сложнее полуэмпирических и требуют значительно большего объема информации. Для непосредственного получения такой информации необходимы эксперименты на уровне структуры материала, что, как правило, лишено практического смысла. Исключение составляют искусственные композиционные материалы, сведения об элементах структуры которых часто бывают известны еще до создания материала.  [c.17]

Аналогичным образом можно конструировать другие простыв феноменологические схемы дискретного описания процессов разрушения слоистых и других композиционных материалов, основываясь на структурном подходе и учитывая взаимное влияние компонентов при разрушении. Общим требованием при зтом является термодинамическая непротиворечивость вводимых схем разрушения и алгоритмов их реализации, которая для адиабатических процессов сводится к тому, чтобы на дискретных элементах энергия разрушения, или диссипация внутренней энергии, была положительной неубывающей функцией, а для разрушенного элемента выполнялись определенные инвариантные свойства. Критерием адекватности построенных моделей реальным физическим явлениям служит проверка близости результатов экспериментальным данным. Следует отметить, что в литературе практически отсутствуют прямые экспериментальные данные о динамике процессов разрушения внутри тел и композиционных материалов, хотя современная физическая аппаратура позволяет визуально представить этот процесс с помощью различных томографов, плотномеров, рентгеновских датчиков и съемок в рентгеновских лучах.  [c.33]

Разработка новых материалов может оказаться сопряженной с необходимостью разработки и соответствующих критериев разрушения. Структура композиционных материалов помогает подсказать формулировку критерия разрушения, который может иметь форму, непосредственно связанную с конструкцией армировки или с данной структурой, в частности, иерархическую, структурно-блочную. Запутанность и разнообразие молекулярного строения реальных полимеров (эластомеры — резина, полиуретан и др., термопласты — полиамид, полиэтилен, полипропилен, политетрафторэтилен и др.) не позволяют должным образом описать процесс разрушения и сформулировать физически обоснованный (детерминированный) критерий разрушения. В дополнение к этому добавим, что даже для вполне регулярной структуры разброс экспериментальных результатов в 20 % мало кого удивляет. Поэтому в ходу феноменологические зависимости типа уравнений Е.Ф. Понселе, С.П. Журкова и Г.М. Бартенева для расчета времени до разрушения, происходяш,его в результате кинетических процессов накопления повреждений, распределенных в объеме тела.  [c.13]

В книге изложены методы расчета коэффициентов тепло- и электропроводности смесей и композиционных материалов. Рассмотрены модели структур основных групп смесей и композиционных материалов твердых пористых, спеченных, зернистых, волокнистых, металло- и минералокерамик, керметов, растворов, расплавов и газовых смесей в широком диапазоне изменения определяющих параметров. Результаты расчета сопоставлены с обширными экспериментальными данными, приведены таблицы, графики, формулы для практических расчетов.  [c.2]

Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]

Экспериментальных данных о поведении композиций с короткими волокнами при циклических нагрузках очень мало. По данным, полученным в работе [75], установлено, что предел усталостной выносливости поликарбоната при 10 циклов возрастает в 7 раз при введении 40% стекловолокон длиной 6,4 мм. В работе [76] определено число циклов до разрушения эпоксидных смол, наполненных короткими борными волокнами, и установлено, что при циклических нагрузках с амплитудой, составляющей любую долю от разрушающего напряжения, число циклов до разрушения быстро возрастает с увеличением характеристического отношения волокон, достигая постоянных значений при Ijd около 200. Эту величину можно считать критическим характеристическим отношением, выше которого усталостная прочность постоянна и пропорциональна статической прочности при изгибе (рис. 2.48). В этой же работе исследованы свойства эпоксидных смол с ориентированными асбестовыми волокнами. При этом установлено, что их поведение мало отличается от поведения эпоксидных смол с борными волокнами длиной 25 мм. Оуэн с сотр. [77] показали, что усталостная прочность при 10 циклах полиэфирной смолы, наполненной стекломатом с хаотическим распределением волокон, колеблется между 15 и 45% от разрушающего напряжения при статическом растяжении. В работе [78] изучали поведение при циклическом растяжении и изгибе эпоксидной смолы, содержащей 44% (об.) ориентированных стеклянных волокон длиной 12,5 мм. Полученные результаты показывают, что этот материал является перспективным для изделий, работающих при циклических нагрузках, так как предел его усталостной выносливости составляет более 40% от разрушающего напряжения при растяжении. Эти результаты необычны для стеклопластиков, для которых, очевидно, нет истинно безопасного нижнего предела при циклических нагрузках даже в случае непрерывных волокон [79]. Недавно были исследованы свойства при циклических нагрузках промышленных полиэфирных премиксов [80]. Полученные кривые зависимости амплитудного напряжения от числа циклов до разрушения для литьевых премиксов с хаотическим в плоскости распределением волокон (рис. 2.49) можно сравнить с кривыми, полученными Оуэном с сотр. [81] для композиционных материалов с однонаправленными непрерывными волокнами и для слоистых пла-  [c.106]


Как нн удивительно, в литературе отсутствуют какие-либо сообщения о систематических исследованиях явлений переноса в асбопластиках, несмотря на их широкое применение. Изучение коэффициентов теплопроводности однонаправленных композиционных материалов на основе антофиллита и эпоксидного связующего было предпринято НИИ взрывчатых веществ [24] в связи с их применением в качестве материалов конструкционного назначения в химическом машиностроении и в качестве высокотемпературных теплоизоляционных материалов. Результаты этого исследования, приведенные на рис. 7.15, являются первым шагом в заполнении пробела в наших знаниях в этой области. Было исследовано влияние объемной доли волокна и температуры на k r-Для установления корреляции между экспериментальными и расчетными данными были использованы уравнения (7.24) и (7.25), которые, как отмечалось выше, оказались вполне приемлемыми для установления такой корреляции для коэффициентов теплопроводности в поперечном направлении композиционных материалов на основе углеродных волокон. Кроме того, на рис. 7.15 приведены некоторые дополнительные данные, относящиеся к композиционным материалам на основе тканых матов и матов с хаотически расположенными в плоскости хризотиловыми волокнами, и некоторые показатели свойств композиционных материалов на основе эпоксидной смолы. Имеется некоторое различие в свойствах материалов на основе хризотила и антофиллита. Для облегчения сравнения свойств композиционных материалов данные на рис. 7.15 отнесены к общепринятой стандартной температуре 35 °С. Экспериментально установлено [24], что для композиционных материалов на основе антофиллита и эпоксидной смолы характерны низкие значения температурного коэффициента теплопроводности. Его значение аналогично значению температурного коэффициента эпоксидной матрицы при всех исследованных объемных долях волокна и приблизительно равно 0,4-10 Вт/(м-К ).  [c.314]

Разделы, содержащие информацию, реобходимую для решения этой задачи, включают основы теории упругости анизотропного тела и механики разрушения композиционных материалов, результаты исследования напряженного состояния стержней, пластин и оболочек, анализа распространения волн и ударных воздействий, определения концентрации напряжений в окрестности линий возмущения и узлов соединений, оценки надежности, описания процессов автоматизированного проектирования и некоторых экспериментальных методов.  [c.9]

Рассматриваемый здесь подход к вычислению эффективных модулей композиционных материалов основан на понятии представительного элемента объема, т. е. такого элемента, в котором все усредненные по объему компоненты тензоров напряжений и деформаций равны соответствующим величинам, вычисленным для композита в целом. Из-за математических трудностей решение задачи в микромеханической постановке обычно доводится до конца только для сравнительно простых композитов, например для бесконечной упругой матрицы, армированной одинаковыми параллельными упругими волокнами, образующими двоякопериодическую систему. Исключением из этого общего правила является работа Сендецки [17], в которой решена задача о продольном сдвиге матрицы, армированной произвольно расположенными волокнами произвольного диаметра. Поскольку приведенное выше математическое определение эффективных модулей отличается от физического определения, основанного на экспериментально наблюдаемых усредненных по поверхности значениях компонент тензоров напряжений и деформаций, важно понимать, что между этими двумя определениями существует связь, устанавливаемая в результате микро-.адеханического исследования (см. разд. V).  [c.15]

В настоящей главе была сделана попытка дать сводку результатов, полученных в различных экспериментальных и теоретических работах по волнам и колебаниям, возникающим в направленно армированных композитах, для случая малых деформаций и линейных определяющих уравнений. Эта попытка представляется своевременной, так как за последние годы достигнуты значительные успехи в понимании особенностей линейного динамического поведения композиционных материалов. Линейная теория с ее точными результатами для слоистой среды и различными хорошо обоснованными приближенными подходами к описанию как слоистых, так и волокнистых композитов в настоящее время близка к полному завершению. Этот объем теоретических сведений дополняется экспериментальной проверкой результатов, относящихся к распространению сину-соида льных волн и импульсных возмущений. Следует отметить, однако, что необходимость проведения дальнейших экспериментальных исследований все еще остается важной. Многое еще предстоит сделать и в решении задач с нестационарными волнами, в особенности в определении локальных значений полевых переменных, таких, как напряжения на поверхности раздела фаз и динамическая концентрация напряжений.  [c.388]

Робинзон [54] для предсказания долговечности прядей использовал свою модель в двух видах — логарифмическом и полулогарифмическом. Его результаты показывают, что в обоих случаях долговечность пряди примерно в 10—10 раз больше, чем для одного волокна при одной и той же удельной нагрузке. Однако, по-видимому, экспериментального подтверждения модели нет, поэтому ее пригодность для предсказания действительного поведения композиционных материалов сомнительна.  [c.316]

При определенных температурах нагрева композиции перед прессованием и определенных режимах этого процесса границы между частицами алюминия исчезают и полученный по такой технологии модифицирующий пруток можно считать композиционным материалом. Такие прутки выполняют роль носителя модификатора — при их введении в расплав алюминиевая матрица расплавлялась и частицы НП оказывались в объеме жидкого металла, минуя контакт с атмосферой. Экспериментально установлено, что независимо от химиче-ското состава НП, их кристаллической системы и класса, элементов симметрии, пространственной группы, структурного типа, периода решетки, плотности, температуры плавления и других рассмотренных параметров все они обладали близким модифицирующим эффектом. Как показали результаты исследований, зарождающая способность частиц НП определяется самой технологией изготовления модифицирующих композиций — совместным прессованием частиц алюминия иНП и способом их введения в расплав. В результате прессования исключительно твердых частиц НП в контакте с алюминием, обладающим высокой пластичностью, происходят его нагрев и дополнительное повышение характеристик пластичности, при этом на поверхности частиц образуется монослой алюминия, который впоследствии и служит подложкой для наращивания кристаллического материала при охлаждении и затвердевании металла.  [c.261]

В готовом композиционном материале могут присутствовать воздух и летучие продукты отверждения, приводящие к пористости, степень которой даже в хорошо отформованных образцах может достигать 6—10%. Наличие пор, которые трудно определить количественно, в свою очередь приводит к вариабильности физических свойств и вполне очевидно, что относительно большой разброс экспериментальных данных для аналогичных по своей природе композиционных материалов является результатом этого эффекта.  [c.286]

За последние годы был опубликован ряд работ, посвященных систематическим исследованиям тепло- и электропроводности композиционных материалов, в которых кроме экспериментальных данных о свойствах композиционных материалов содержится информация о соответствующих свойствах волокнистых наполнителей и матриц, а также приводятся методы и условия изготовления образцов для испытаний. Результаты этих исследований были положены в основу полуэмпирического корреляцибиого метода, который рассмотрен ниже.  [c.287]


Конкретные вьиисления проводились для древесно —полимерных композитов. Анализ развития методов исследования прочности древесно — полимерных композиционных материалов свидетельствует о том, что древесностружечные плиты плоского прессования являются наиболее изученным объектом таких исследований как теоретическими, так и экспериментальными методами. Поэтому использование разрабатываемого в работе подхода для описания, в первую очередь, прочности древесностружечных плит позволяет обеспечить сопоставимость с результатами других теорий и в конечном итоге установить его место в их ряду.  [c.203]

Рис. 4-15. Теплопроводность композиционных материалов на основе нержавеющей стали и двуокиси урана Расчет 1,2 — по формулам (1-21) и (1-32) для объемной концентрации иС>2 rrit = 0,15 3, 4 — по формуле (1-32) для /Пг = 0,31 и m2 = 0.5. Эксперимент [115] 5, 6 — теплопроводность нержавеющей стали 304 L и двуокиси урана (сглаженные экспериментальные кривые) 7, 8, 9 результаты измерений, соответствующие расчету 2, 3, 4 Рис. 4-15. Теплопроводность композиционных материалов на основе <a href="/info/51125">нержавеющей стали</a> и двуокиси урана Расчет 1,2 — по формулам (1-21) и (1-32) для <a href="/info/107330">объемной концентрации</a> иС>2 rrit = 0,15 3, 4 — по формуле (1-32) для /Пг = 0,31 и m2 = 0.5. Эксперимент [115] 5, 6 — теплопроводность <a href="/info/51125">нержавеющей стали</a> 304 L и двуокиси урана (сглаженные экспериментальные кривые) 7, 8, 9 <a href="/info/8483">результаты измерений</a>, соответствующие расчету 2, 3, 4
Результаты измерений теплопроводности, электросопротивления и соотношения Видемана — Франца — Лоренца металлокерамических материалов на основе железа приведены на рис. 2 и 3. Кривые температурной зависимости удельного электросопротивления р исследованных композиций, приведенные на рис. 2 а (кривые 3—8), во всем исследованном диапазоне температур имеют свойственный для металлов монотонно возрастающий характер. На том же рисунке (кривая 1) для сравнения приведены значения р = / (Г) компактного железа (чистота 99,95%), взятые из [7 , и литого армко-железа, полученные экспериментально. График ноказЕ) -вает, что количественно электросопротивление рассматриваемых композиционных материалов значительно превышает значения электросопротивления компактного железа. Высокое удельное электросопротивление композиций объясняется не только наличием пористости, уменьшающей ек тивное поперечное сечение образцов, хотя ее влияние и является доминирующим, но и характером структуры и значительными контактными сопротивлениями на границах раздела фаз, что подтверждается повышенными значениями сопротивления исследованных пористых образцов, пересчитанными по [8] на беспористое состояние (кривые 9, 10). Кривая 10, в частности, превышает кривую 2 на 9—11%, что, очевидно, вызвано наличием переходных контактных сопротивлений на границе зерен. Немаловажную роль играет также состав композиций. Так, введение в состав порошка железа 3% графита при одинаковой пористости композиций приводит к повышению р материала на 7—8% (кривые 9—10), Это вызвано уменьшением площади металлического контакта на единицу площади поперечного сечения образца и повышением сопротивления самой металлической матрицы [9] вследствие взаимодействия железа с графитом и образования перлитной структуры. Легирование железографита 4% сернистого цинка несколько снижает сопротивление композиции, хотя сам сульфид цинка имеет сравнительно высокое значение р [10]. Кажущееся противоречие, по-видимому, объясняется повышением количества и качества металлических контактов в композиции под влиянием образующейся при спекании жидкой фазы сульфидной эвтектики, активизирующей процесс спекания железного порошка.  [c.112]


Смотреть страницы где упоминается термин Экспериментальные результаты для композиционных материалов : [c.102]    [c.290]    [c.302]    [c.472]    [c.150]    [c.117]    [c.454]    [c.45]   
Смотреть главы в:

Прочность конструкционных пластмасс  -> Экспериментальные результаты для композиционных материалов



ПОИСК



Композиционные материалы

Экспериментальные результаты



© 2025 Mash-xxl.info Реклама на сайте