Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор поляризации излучения

Поляризация лазерного пучка может существенно влиять на эффективность технологических процессов, в которых отражение излучения играет важную роль. Например, при лазерной резке толстых металлических материалов излучение падает в глубь прорезаемого образца после многократного отражения излучения от боковой поверхности щели. Так как угол Брюстера для металлов близок к л/2, то при таких отражениях излучение с ориентацией электрического поля вдоль направления реза будет меньше поглощаться при отражении от боковой поверхности щели и достигнет дна с меньшими потерями, что приведет к росту предельной глубины реза. Однако такая поляризация будет оптимальной только для резки в заданном направлении. При вырезании сложных фигур излучение должно иметь круговую поляризацию, так как именно она обеспечит одинаковую ширину и глубину реза в самых разных направлениях. Как видно из рассмотренных примеров, выбор поляризации излучения должен проводиться с учетом особенностей конкретного технологического процесса.  [c.62]


Выбор поляризации излучения. Изотропные нелинейные кубичные среды, к которым относится и стекло, под воздействием света становятся анизотропными. Это означает, что наводимая добавка к показателю преломления должна зависеть от поляризации мощной волны.  [c.257]

ИЗ цуга выделяется и затем усиливается один импульс с возможно лучшими параметрами. Схема одной из установок для выделения и дальнейшего усиления одиночного импульса показана на рис. 7.7 (см., например, [7.16, 7.23, 7.36]). Лазер должен излучать цуг импульсов, свет которых линейно поляризован. Этот цуг проходит через ячейку Поккельса, а затем через поляризационное отклоняющее устройство. При отсутствии напряжения на ячейке Поккельса весь цуг должен был бы отклоняться в направлении, определяемом поляризацией излучения лазера. При включении высокого напряжения зарядный кабель заряжается и напряжение оказывается приложенным к искровому промежутку. При соответствующем выборе порога срабатывания импульс, обозначенный на рис. 7.7 цифрой 1, являющийся в цуге первым, зажигает в разрядном промежутке искру. В результате этого высоковольтный кабель за короткий промежуток времени разряжается. В течение этого промежутка, составляющего несколько наносекунд, к ячейке Поккельса  [c.261]

Выбор метода описания волнового поля источника излучения зависит от системы допущений на его ) арактеристики (монохроматичность, когерентность, поляризацию) и, кап показано ниже, определяет аппарат, с помощью которого описьшается преобразование оптического сигнала в оптико-электронном тракте.  [c.42]

Представленная на рис. 3.5 схема установки для снятия автокорреляционной функции напряженности поля модифицируется следующим образом перед детектором помещается нелинейный оптический кристалл, который безынерционно преобразовывает часть излучения на основной частоте со во вторую гармонику с частотой 2со. Остаточное излучение на частоте со поглощается фильтром. Кроме того, можно перед обоими зеркалами поместить поляризаторы, обеспечивающие взаимно перпендикулярную поляризацию отраженных волн. При надлежащем выборе кристалла и его ориентации (см. гл. 8 и [11, 22, 30]) выполняется равенство  [c.117]

Линейными называются такие анизотропные элементы, собственные состояния поляризации которых линейны. При этом собственные волны при прохождении данного элемента могут характеризоваться разными потерями или различными набегами фазы. В первом случае элемент будет называться амплитудным, во втором — фазовым. Для линейных анизотропных элементов как амплитудных, так и фазовых, вид матрицы зависит от ориентации поперечных координатных осей и не зависит от направления распространения излучения. Простейший диагональный вид матрицы Джонса соответствует такому выбору поперечных координатных осей, когда они совпадают с проекциями ортогональных собственных осей оптического элемента на плоскость, перпендикулярную направлению распространения волны. Такие поперечные оси называют собственными. В дальнейшем мы приводим матрицы линейных анизотропных элементов относительно собственного координатного базиса.  [c.147]


Эти уравнения для волновых амплитуд принято называть уравнениями генерации . Для их вывода мы до сих пор ограничивались изотропной средой и волнами с одним направлением поляризации. Однако обычно в приложениях важную роль играют также анизотропные вещества, поскольку в них нелинейные эффекты проявляются уже во втором порядке. Кроме того, как в изотропных, так и в анизотропных веществах наблюдаются эффекты, в которых большое участие принимают компоненты поля с различными направлениями поляризации. В этих общих случаях система уравнений генерации сложным образом зависит от направлений распространения и поляризации отдельных волн. В дальнейшем мы сделаем упрощающие предположения, при которых уравнения генерации для компонент Е. будут подобны уравнениям для изотропной среды при фиксированном направлении поляризации. Вновь предположим, что волновые векторы всех участвующих в процессе волн имеют одно и то же направление, за которое мы выберем ось г лабораторной системы координат. Этого можно достичь, если направить излучение перпендикулярно к соответствующим образом вырезанной поверхности кристалла. Кроме того, мы ограничимся оптически одноосными кристаллами и расположим ось у лабораторной системы координат в плоскости главного сечения, т. е. в плоскости, образуемой направлением распространения луча и оптической осью. Ось х перпендикулярна этой плоскости. При таком выборе осей. -компонента волны с частотой I распространяется как обыкновенная водна с волновым числом = <7о (Л, а /-компонента — как необыкновенная волна с волновым числом ао /) . (Мы обозначаем через волновое число света с направлением поляризации .) Наконец, мы сделаем достаточно часто выполняющееся предположение, что эллипсоид линейного показателя преломления мало отклоняется от сферической формы. При этом предположении оказывается возможным во многих случаях пренебречь  [c.101]

В приведенном в 10 микроскопическом расчете предположение о дипольном характере излучения было существенным при выборе выражений (10.1) — (10.5) и (10.16а). В феноменологической теории это предположение предопределило выбор вида образующихся волн (1.7) и (1.8) и выбор выражения для поляризации в  [c.130]

Выбор типа волн. Из табл. 1 следует, что тип волны следует выбирать исходя из требований минимального значения коэффициента рассеяния бр. Это остается справедливым и с точки зрения эффекта вторичного рассеяния. При ПОСТОЯННОЙ частоте коэффициент рассеяния продольных волн в 4—6 раз меньше, чем поперечных. Однако в формулах табл. 1 фигурирует произведение бр с, а скорость продольных волн в 2 раза больше, чем поперечных. В результате выигрыш при использовании продольных волн вместо поперечных оказывается не столь значительным. Тем не менее преимущества применения продольных волн подтверждаются практикой [93]. В работе [83] обосновано преимущество применения поперечных волн со строгой поляризацией колебаний. Оно состоит в том, что при многократном рассеянии на границах зерен плоскость поляризации изменяется сильнее, чем при однократном отражении от дефекта. Если приемник реагирует на упругие волны с той же поляризацией, что и излученные, можно ожидать увеличения отношения сигнал — помеха.  [c.168]

Отражение на зеркальных гранях гетеролазеров обеспечивает для излучения обратную связь, необходимую для генерации, и влияет на ряд свойств гетеролазеров. В 8 показано, что отражение на гранях приводит к выбору ТЕ-поляризации как преобладающей для излучения ДГС-лазеров. Коэффициент отражения на гранях входит в выражение для плотности порогового тока ( 8 гл. 3), а также влияет ( 4 гл. 7) на значение толщины активного слоя, при котором наблюдаются моды высшего порядка, определяющие распределение поля в направлении, перпендикулярном плоскости р — -перехода.  [c.34]

Далее, в гл. 5 и 6 на основе решения электродинамической задачи определяются параметры математических моделей излучающего полотна АФАР, используемые при анализе характеристик АФАР. Параметры математической модели излучающего полотна АФАР определяются для излучателей двух наиболее распространенных типов волноводных и вибраторных с произвольной поляризацией поЛя излучения. Здесь же исследуются вопросы сходимости численных алгоритмов определения параметров мате атических моделей. Приводятся результаты расчетов, показывающие пригодность алгоритмов и позволяющие ориентироваться в выборе состава и числа учитываемых Мод, После определения параметров математических моделей АФАР конкретного типа можно найти токи в излучателях, а по ним характеристики АФАР.  [c.7]


Как видно из приведенных выше результатов, эффективность усиления импульсов может быть повышена за счет изменения уг-j[i0B0fl расходимости излучения на входе в усиливающую среду. Она в свою очередь зависит от степени дифракционного расплывания светового пучка на краях, определяемого способом его апо-дизации, спектральным составом усиливаемого излучения, временной структурой, поперечным распределением излучения, характером и степенью поляризации. При этом возможен также выбор материала усилительного каскада с несколько меняющимися характеристиками, поперечными размерами, формой и т. д. Принцип оптимизации может быть основан на построении семейства кривых зависимости полного усиления от интенсивности излучения на входе для различных параметров импульсов на выходе и характеристик усиливающей среды.  [c.195]

При взаимодействии светового пучка с твердым телом изменяются параметры пучка (интенсивность, поляризация, частотный и угловой спектры и т. д.). Степень изменения каждого из этих параметров определяется свойствами как твердого тела, так и пучка, а также условиями взаимодействия. Изменение температуры твердого тела сопровождается изменением амплитуды колебаний атомов в узлах решетки и, вследствие этого, изменением межатомных расстояний, что приводит к температурной зависимости оптических параметров. Известны температурные зависимости ширины запреш енной зоны полупроводниковых и диэлектрических кристаллов, действительной и мнимой частей комплексного показателя преломления, концентрации и подвижности свободных носителей заряда, плотности фононов для каждой разрешенной моды колебаний решетки [1.41, 1.42]. Выбор характеристик пучка, условий взаимодействия пучка с объектом, а также условий регистрации сигнала позволяет проводить измерение многих температурно-зависимых параметров твердого тела. Оптическая термометрия включает последовательность преобразований в соответствии с температурой устанавливается значение физического параметра, проводится его измерение оптическим методом, затем на основе известных соотношений между температурой, физическим параметром и регистрируемым оптическим сигналом определяется температура. Эта последовательность предполагает использование внешнего зондируюш его излучения, т. е. диагностика является активной.  [c.19]

Ясно, что в указанных задачах излучение в атмосфере не может иметь Крутовой поляризации и не может зависеть от азимута. Поэтому матрицу рассеяния вместе с матрицами поворота можно усреднить по азимуту, а поляризация может быть только линейной. За счет выбора поляризационного базиса можно исключить параметр Стокса и, так что выпадают два параметра Стокса. Вектор интенсивностей содержит только два параметра линейной поляризации  [c.272]

В принципе световое и вообще электромагнитное поле содержит все возможные длины волн, направления распространения и на правления поляризации. Но главное назначение лазера как прибора состоит в генерации света с определенными характеристиками. Первый этап селекции, а именно по частоте, достигается выбором лазерного материала. Частота V испускаемого света определяется формулой Бора Ну = и нач — конечн и фиксируется выбором уровней энергии активной среды. Разумеется, линии оптических переходов не являются резкими, а по различным причинам уширены. Причиной уширения могут быть конечные времена жизни уровней вследствие излучательных переходов или столкновений, неоднородность кристаллических полей и т. д. Для дальнейшей селекции частот используются оптические резонаторы. В простейшем СВЧ-резонаторе, стенки которого имеют бесконечно высокую проводимость, могут существовать стоячие волны с дискретными частотами. Эти волны являются собственными модами резонатора. Когда ученые пытались распространить принцип мазера на оптическую область спектра, было не ясно, будут ли вообще моды у резонатора, образованного двумя зеркалами и не имеющего боковых стенок (рис. 3.1). Вследствие дифракции и потерь на пропускание в зеркалах в таком открытом резонаторе не может длительно существовать стационарное поле. Оказалось, однако, что представление о типах колебаний (модах) с успехом может быть применено и к открытому резонатору. Первое доказательство было дано с помощью компьютерных вычислений. Фокс и Ли рассмотрели систему двух плоских параллельных зеркал и задали начальное распределение поля на одном из зеркал. Затем они исследовали распространение излучения и его отражение. После первых шагов начальное световое поле рассеивалось и его амплитуда уменьшалась. Однако после, скажем, 50 двойных проходов мода поля приобретала некую окончательную форму и ее амплитуда понижалась в одно и тоже число раз при каждом отражении (с постоянным коэффициентом отражения. Стало ясно, как обобщить понятие моды на случай открытого резонатора. Это такая конфигурация поля, которая не изменяется  [c.64]


Смотреть страницы где упоминается термин Выбор поляризации излучения : [c.144]    [c.341]    [c.492]    [c.178]    [c.206]   
Смотреть главы в:

Лазеры на неодимовом стекле  -> Выбор поляризации излучения



ПОИСК



Выбор излучения

Поляризация

Поляризация излучении



© 2025 Mash-xxl.info Реклама на сайте